Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste

Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 1027-1036 ◽  
Author(s):  
Huseyin Guven ◽  
Mustafa Evren Ersahin ◽  
Recep Kaan Dereli ◽  
Hale Ozgun ◽  
Isa Isik ◽  
...  
2021 ◽  
Author(s):  
Qing Zhao ◽  
Samuel Gyebi Arhin ◽  
Ziyi Yang ◽  
Haopeng Liu ◽  
Zongye Li ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


2010 ◽  
Vol 113-116 ◽  
pp. 450-458 ◽  
Author(s):  
Yong Zhi Chi ◽  
Yu You Li ◽  
Min Ji ◽  
Hong Qiang ◽  
Heng Wei Deng ◽  
...  

This paper presents an experimental study over 204 days on anaerobic degradation of thickened waste activated sludge (TWAS) from a municipal wastewater treatment plant (WWTP). The experiments were conducted under thermophilic (55°C) and mesophilic (35°C) condition, respectively, by using the semi-continuous flow completely mixed reactors. The influent total solids (TS), hydraulic retention time (HRT) and chemical oxygen demand (COD) loading levels were around 4%, 30 days and 1.67 kg-CODCr•m-3•d-1 , respectively. During the opration period, the thermophilic anaerobic digestion process (TADP) and the mesophilic anaerobic digestion process (MADP) were stable and well-functioned without ammonia inhibition. Particulate organic matters reduction of TADP was superior to that of MADP. This result implies that TADP has higher sludge reduction efficiency than MADP. According to the simulated chemical formula of TWAS, C5.85H9.75O3.96N, and the stoichiometric equation, the methane content and the ammonia yield in the anaerobic process could be calculated, which were consistent with the experimental results. The methane yield of TADP was a little higher than that of MADP. The statistical mean values of methane content for TADP and MADP were 60.97% and 62.38%, respectively.According to paired t-test, there was a significant difference in methane content between TADP and MADP(α=0.01, n=62). Compared with the mesophilic digested sludge, the dewaterability of thermophilic digested sludge was lower.


2001 ◽  
Vol 44 (10) ◽  
pp. 203-208 ◽  
Author(s):  
G.-H. Chen ◽  
S. Saby ◽  
M. Djafer ◽  
H.-K. Mo

This paper presents three new approaches to reduce excess sludge production in activated sludge systems: 1) modification of conventional activated sludge process with insertion of a sludge holding tank in the sludge return line; 2) chlorination of excess sludge so as to minimize excess sludge production; and 3) utilization of a metabolic uncoupler, 3, 3′, 4′, 5-Tetrachlorosalicylanilide (TCS) to maximize futile activity of sludge microorganisms thereby leading to a reduction of sludge growth. Pilot study was carried out to evaluate this modified activated sludge process (OSA). It has been confirmed that the OSA process is effective in reducing excess sludge; particularly when the ORP level in the sludge holding tank was kept at -250 mV, more than 50% of the excess sludge was reduced. This process can maintain the effluent quality and even perform with a better sludge settleability than a conventional system. Experimental work on the second approach showed that chlorination treatment of excess sludge at a chlorine dose of 0.066 g Cl2/g MLSS reduced the excess sludge by 60%, while concentration of THMS was found below 200 ppb in the treated sludge. However, such sludge chlorination treatment sacrificed sludge settleability. Thus, it is not feasible to introduce the chlorination step to a conventional system. The third approach confirmed that addition of TCS could reduce sludge growth effectively if the TCS concentration is greater than 0.4 ppm. A 0.8-ppm concentration of TCS actually reduced excess sludge by 45%. It was also experimentally demonstrated that presence of TCS increases the portion of active sludge microorganisms over the entire microbial population.


2012 ◽  
Vol 2012 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Janelle Amador ◽  
Diane Nelsen ◽  
Cale McPherson ◽  
Patrick Evans ◽  
David Parry ◽  
...  

2014 ◽  
Vol 70 (6) ◽  
pp. 1115-1121 ◽  
Author(s):  
Emma Haun ◽  
Katharina Ulbricht ◽  
Regina Nogueira ◽  
Karl-Heinz Rosenwinkel

A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.


Sign in / Sign up

Export Citation Format

Share Document