Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile

Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 115985 ◽  
Author(s):  
Luis M. López-Ochoa ◽  
Konstantin Verichev ◽  
Jesús Las-Heras-Casas ◽  
Manuel Carpio
2019 ◽  
Vol 111 ◽  
pp. 06009
Author(s):  
Tymofii Tereshchenko, ◽  
Dmytro Ivanko ◽  
Natasa Nord ◽  
Igor Sartori

Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.


2014 ◽  
Vol 1020 ◽  
pp. 518-523
Author(s):  
Martin Kovac ◽  
Katarina Knizova

The subject of the paper is to calculate the energy performance of building in proposed variants. The differences in the variants are in the using of conventional and renewable sources for heating and domestic hot water system. Target of the second part of paper is to know, how much money we need to invest into the proposed variants for heating and domestic hot water systems and how much money will by the user paying for operating costs. The conclusion of the paper describes the payback periods of proposed variants.


2014 ◽  
Vol 568-570 ◽  
pp. 1991-1994
Author(s):  
Hai Hong Cui

The purpose of this paper is to identify the main requirements of the Building Regulations Part L1A for new dwellings. An explanation of the technical basis for energy rating is given including how they are calculated, how fuel costs are used, the role of the standard occupancy pattern, and an appreciation of the Building Research Establishment Domestic Energy Model (BREDEM). The aims and requirements of the European Directive on the Energy performance of Buildings and its implementation for new and existing domestic buildings is also considered. Design/methodology/approach – The requirements of Part L1A of the Building Regulations are developed. These relate to the thermal properties of the building fabric including insulation, thermal bridging, air tightness and glazing, the efficiency and responsiveness of heating and hot water systems, ventilation and lighting. The methodology for calculating thermal transmittance coefficients (U-values) is also demonstrated.


2021 ◽  
Vol 246 ◽  
pp. 05003
Author(s):  
Jeroen Lippens ◽  
Saar Lokere ◽  
Wout Barbary ◽  
Hilde Breesch

The CO2 emissions and energy use of SMEs in the tertiary sector (e.g. small food and non-food shops, restaurants, offices, pubs, etc.) are high and there are few initiatives to reduce because this target group is difficult to reach due to small scale and diversity. The Flemish-Dutch TERTS project wants (1) to make the sector aware of the potential of and (2) to demonstrate energy transition and energy efficiency of innovative technologies. This paper is focussing on butcher’s shops. A reference model is made based on data of 90 existing shops in Flanders (Belgium). The energy use of the building and systems is calculated according to DIN V 15 899. The cost-benefit of various measures is calculated and compared. Results show that the main energy consumers of a butcher shop are cooling, lighting and domestic hot water, whereas heating only has a rather small contribution. There are several cooling needs: product-cooling (in walk-in freezers, walk-in coolers and the cooling counter) and cooling of the workshop. The combination of the following measures is concluded to be the most favourable and leads to a reduction in final energy consumption of 60 %: a reflective coating on the flat roof and extra roof insulation, relighting with LED, air-to-water heat pump for the generation of domestic hot water and PV panels as local energy generation.


TECCIENCIA ◽  
2020 ◽  
Vol 16 (30) ◽  
pp. 29-52
Author(s):  
Juan Andres Avila Carraznza ◽  
Carlos Mario Rocha ◽  
Juan Sebastian Solis Chavez

The use of Flat Solar Collectors for the generation of Domestic Hot Water (DHW), facilitates access to this resource in an efficient, economical and sustainable way. The Sustainable Development Goals proposed by the UN, referring specifically to sustainable water management and access to renewable energy, are the main motivation for this work, since the former is an essential vital resource and its access reduces the inequality index, in developing countries such as Colombia, while the use of solar thermal energy reduces the environmental impact of the water heating process, thus reducing the consumption of electrical energy in the residential sector. Therefore, this work proposes to estimate DHW profiles through a spreadsheet that models the DHW flow thermodynamically for a whole year, making it possible to evaluate the energy performance of a Solar Collector available in the Colombian market and that is used in four types of dwellings located in the city of Bogotá. The simulation results present the DHW consumption profiles in kg/h per year, with DHW temperatures of up to 21°C, for a total transmitted irradiance of the order of 1100 W/m^2, which produces thermal energy close to 1kW. This comparative analysis allows us to review the technical and economic feasibility of solar collectors installed in single-family homes and with a DHW consumption profile close to the Colombian socio-economic reality


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2100 ◽  
Author(s):  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Spyridon Lykoudis ◽  
Simon Kontoyiannidis ◽  
Elena G. Dascalaki ◽  
...  

This work exploits data from 30,000 energy performance certificates of whole nonresidential (NR) buildings in Greece. The available information is analyzed for 30 different NR building uses (e.g., hotels, schools, sports facilities, hospitals, retails, offices) and four main services (space heating, space cooling, domestic hot water and lighting). Data are screened in order to exclude outliers and checked for consistency with the Hellenic NR building stock. The average energy use and CO2 emission intensities for all building uses are calculated, as well as the respective energy ratings in order to gain a better understanding of the NR sector. Finally, in an attempt to determine whether these values are representative for the various Hellenic NR building uses, their temporal evolution is investigated. The average primary energy use intensity is 448.0 kWh/m2 for all NR buildings, while the CO2 emissions reach 147.5 kgCO2/m2. The derived energy baselines reveal that indoor sports halls/swimming pools have the highest energy use, while private cram schools/conservatories have the lowest, due to their operational patterns. Generally, from the four services taken into account, lighting is the most energy consuming, followed by cooling, heating and finally domestic hot water. For a total of 11 building uses, more data from the certificates will be necessary for deriving representative baselines, but, when it comes to buildings categories, more data are required.


Sign in / Sign up

Export Citation Format

Share Document