scholarly journals Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2100 ◽  
Author(s):  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Spyridon Lykoudis ◽  
Simon Kontoyiannidis ◽  
Elena G. Dascalaki ◽  
...  

This work exploits data from 30,000 energy performance certificates of whole nonresidential (NR) buildings in Greece. The available information is analyzed for 30 different NR building uses (e.g., hotels, schools, sports facilities, hospitals, retails, offices) and four main services (space heating, space cooling, domestic hot water and lighting). Data are screened in order to exclude outliers and checked for consistency with the Hellenic NR building stock. The average energy use and CO2 emission intensities for all building uses are calculated, as well as the respective energy ratings in order to gain a better understanding of the NR sector. Finally, in an attempt to determine whether these values are representative for the various Hellenic NR building uses, their temporal evolution is investigated. The average primary energy use intensity is 448.0 kWh/m2 for all NR buildings, while the CO2 emissions reach 147.5 kgCO2/m2. The derived energy baselines reveal that indoor sports halls/swimming pools have the highest energy use, while private cram schools/conservatories have the lowest, due to their operational patterns. Generally, from the four services taken into account, lighting is the most energy consuming, followed by cooling, heating and finally domestic hot water. For a total of 11 building uses, more data from the certificates will be necessary for deriving representative baselines, but, when it comes to buildings categories, more data are required.

2020 ◽  
Vol 160 ◽  
pp. 01004 ◽  
Author(s):  
Stanislav Chicherin ◽  
Lyazzat Junussova ◽  
Timur Junussov

Proper adjustment of domestic hot water (DHW) load structure can balance energy demand with the supply. Inefficiency in primary energy use prompted Omsk DH company to be a strong proponent of a flow controller at each substation. Here the return temperature is fixed to the lowest possible value and the supply temperature is solved. Thirty-five design scenarios are defined for each load deviation index with equally distributed outdoor temperature ranging from +8 for the start of a heating season towards extreme load at temperature of -26°C. All the calculation results are listed. If a flow controller is installed, the customers might find it suitable to switch to this type of DHW supply. Considering an option with direct hot water extraction as usual and a flow controller installed, the result indicates that the annual heat consumption will be lower once network temperatures during the fall or spring months are higher. The heat load profiles obtained here may be used as input for a simulation of a DH substation, including a heat pump and a tank for thermal energy storage. This design approach offers a quantitative way of sizing temperature levels in each DH system according to the listed methodology and the designer's preference.


2019 ◽  
Vol 111 ◽  
pp. 06009
Author(s):  
Tymofii Tereshchenko, ◽  
Dmytro Ivanko ◽  
Natasa Nord ◽  
Igor Sartori

Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.


2021 ◽  
Vol 246 ◽  
pp. 05003
Author(s):  
Jeroen Lippens ◽  
Saar Lokere ◽  
Wout Barbary ◽  
Hilde Breesch

The CO2 emissions and energy use of SMEs in the tertiary sector (e.g. small food and non-food shops, restaurants, offices, pubs, etc.) are high and there are few initiatives to reduce because this target group is difficult to reach due to small scale and diversity. The Flemish-Dutch TERTS project wants (1) to make the sector aware of the potential of and (2) to demonstrate energy transition and energy efficiency of innovative technologies. This paper is focussing on butcher’s shops. A reference model is made based on data of 90 existing shops in Flanders (Belgium). The energy use of the building and systems is calculated according to DIN V 15 899. The cost-benefit of various measures is calculated and compared. Results show that the main energy consumers of a butcher shop are cooling, lighting and domestic hot water, whereas heating only has a rather small contribution. There are several cooling needs: product-cooling (in walk-in freezers, walk-in coolers and the cooling counter) and cooling of the workshop. The combination of the following measures is concluded to be the most favourable and leads to a reduction in final energy consumption of 60 %: a reflective coating on the flat roof and extra roof insulation, relighting with LED, air-to-water heat pump for the generation of domestic hot water and PV panels as local energy generation.


2019 ◽  
Vol 14 (3) ◽  
pp. 1-22
Author(s):  
Anh Tuan Nguyen ◽  
David Rockwood

Due to increased tourist activity, many cities now have a large number of hotel buildings. It is necessary to establish measures to evaluate energy use intensity to effectively manage energy consumption in this sector. This study uses a combined strategy to establish an energy benchmark for hotel buildings in Vietnam. First, a survey and analysis of actual building stock data of 50 hotels in Danang, Vietnam, was conducted. The survey-based benchmark and its related data was then used to build a reference energy model to estimate an energy benchmark for other climatic regions in Vietnam by using the energy simulation method. The results reveal that the average energy use intensity for hotels in Danang was 87.4 kWh/m2.year or 8628.6 kWh/guestroom.year. However, this study proposes that because of the differing expectations of comfort standards, hotels of different grades should have separate benchmarks. This study also proposes an energy intensity-based rating scale, including 7 grades from the least energy intensive (grade A) to the most energy intensive (grade G), which can be used to manage, label, or encourage sustainable energy use in hotel buildings. The relationship between the energy use intensity and the occupancy rate of the hotels was reported, compared, and explained. It was found that occupancy rate has no significant impact on the energy use intensity. From the survey result, some predictive models were developed to estimate annual energy consumption of hotel buildings based on their grades. The simulated benchmarks for other regions were also achieved. The results demonstrate many potential applications in the management, design and construction, and renovation of this building type.


2021 ◽  
Vol 246 ◽  
pp. 05002
Author(s):  
Helena Kuivjõgi ◽  
Jarek Kurnitski ◽  
Aivar Uutar ◽  
Martin Thalfeldt

The goal of decarbonizing the building stock in the EU requires a multi-fold increase of the current renovation rates. In Estonia, the non-residential building sector has had little or no public support to improve the energy efficiency. Therefore, it is essential to study the energy efficient and cost-optimal measures for non-residential building renovation to give guidance to real estate companies and other stakeholders about the renovation alternatives. Furthermore, crucial is to provide input to the government to develop the renovation grant and incentives for renovation. In this study, energy renovation measures and savings to improve the energy performance to NZEB level were identified in a large (16 990 m2 heated area) office building. For that purpose, energy use was measured, simulation model developed and calibrated, feasible and more comprehensive energy improvements and costs analysed. The improvement of lighting, AHU, heating, installation of a 69 kW PV system, and window replacement was needed to achieve the goal with a primary energy use of 163 kWh/m2. However, some of the applied measures had long payback times of 40-70 years and are not realistic to be implemented without renovation incentives.


2021 ◽  
Author(s):  
Niall Buckley ◽  
Gerald Mill s ◽  
Christoph Reinhart

<p>The EU’s Green Deal has a goal of a climate-neutral Europe by 2050. Achieving this goal will require a comprehensive set of actions across all economic sectors, especially the building sector, which currently accounts for 40% of the energy consumed.  Residential energy use is a significant contributor, much of it due to the poorly insulated building stock. Making a ‘just transition’ to more energy-efficient cities requires a spatial approach that can address the correspondence of poor housing and people and the potential for energy innovation at a neighbourhood-scale. In this study, a geographic database of building archetypes is developed for use by the Urban Modelling Interface (Umi) to perform simulations of urban energy use intensity and test the efficacy of energy policies. Umi is applied to a neighbourhood of residential buildings in Dublin (Ireland), many of which perform poorly. Simulated annual energy use intensity is evaluated favourably using energy performance certificate data. Umi is used subsequently to design and test the efficacy of district-level energy policies; the results indicate that the most cost-effective mix of envelope retrofit and onsite energy production to achieve the Green Deal’s target of 60% reduction in greenhouse gas emissions by 2030 and 100% by 2050. The methodology shown here employs data and software that is publicly available for many EU countries.</p>


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5010
Author(s):  
Katarzyna Ratajczak ◽  
Katarzyna Michalak ◽  
Michał Narojczyk ◽  
Łukasz Amanowicz

A building’s energy consumption is assessed considering the energy required for heating, cooling, lighting, and domestic hot water (DHW). Methodologies used to calculate energy certificates in European Union countries consider hot water consumption rates per person or per heated (floor) area, giving wide-ranging values (35–88 dm3/person/day). Using extreme parameters, it is possible to obtain a primary energy index that meets the legal requirements, although unrealistically large proportions of domestic hot water use relative to the total energy balance of the building may marginalize the influence of other components, such as fluctuations in heating, ventilation, or lighting. In the current work, the DHW consumption of three residential buildings was measured to verify the energy consumption for hot water preparation. Investigations were conducted based on the consumption of natural gas for DHW preparation. Experimentally obtained water consumption rates were determined per m2 of a dwelling and per person living in the building. The calculated indicators (0.85 ± 0.005 dm3/m2/day and 27.4 ± 1.4 dm3/person/day) were lower than those used for energy certifications of buildings. The experimentally obtained indicators were used in further theoretical energy assessments of six residential buildings. By adopting the designated indicators, the analyzed buildings met the legally required primary energy value (<70 kWh/m2/year) when using natural gas as a heat source. Applying more realistic DHW consumption values resulted in more accurate energy certifications.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6446
Author(s):  
Anti Hamburg ◽  
Alo Mikola ◽  
Tuule-Mall Parts ◽  
Targo Kalamees

Domestic hot water (DHW) system energy losses are an important part of energy consumption in newly built or in reconstructed apartment buildings. To reach nZEB or low energy building targets (renovation cases) we should take these losses into account during the design phase. These losses depend on room and water temperature, insulation and length of pipes and water circulation strategy. The target of our study is to develop a method which can be used in the early stages of design in primary energy calculations. We are also interested in how much of these losses cannot be utilised as internal heat gain and how much heat loss depends on the level of energy performance of the building. We used detailed DHW system heat loss measurements and simulations from an nZEB apartment building and annual heat loss data from a total of 22 apartment buildings. Our study showed that EN 15316-3 standard equations for pipe length give more than a twice the pipe length in basements. We recommend that for pipe length calculation in basements, a calculation based on the building’s gross area should be used and for pipe length in vertical shafts, a building’s heating area-based calculation should be used. Our study also showed that up to 33% of pipe heat losses can be utilised as internal heat gain in energy renovated apartment buildings but in unheated basements this figure drops to 30% and in shafts rises to 40% for an average loss (thermal pipe insulation thickness 40 mm) of 10.8 W/m and 5.1 W/m. Unutilised delivered energy loss from DHW systems in smaller apartment buildings can be up to 12.1 kWh/(m2·a) and in bigger apartment buildings not less than 5.5 kWh/(m2·a) (40 mm thermal pipe insulation).


2015 ◽  
Vol 1 (3) ◽  
pp. 31
Author(s):  
Julien Chetboula ◽  
Céline Garnier ◽  
Julio Bros-Williamson

ResumenCon los años el rendimiento energético del edificio se ha convertido en una preocupación predominante para los propietarios y administradores de bienes raíces. La atención se centra generalmente en edificios de viviendas, pero en los últimos veinte años un interés en edificios no residenciales ha surgido en el Reino Unido. Los puntos de referencia general se pueden encontrar a escala del Reino Unido, aunque a menudo está restringido a Inglaterra y Gales. Este documento tiene como objetivo proporcionar puntos de referencia para el parque inmobiliario no doméstico escocés como parte del Ayuntamiento de Edimburgo. En esta investigación, la muestra seleccionada incluye datos de energía y las emisiones de carbono calculadas de 199 edificios.Los parámetros decisivos fueron la intensidad de uso de la energía (kWh/m2) y el uso y la edad de los edificios. Esto permitió la creación de seis tipos de edificios, aunque siguiendo patrones de ocupación se dividió en cuatro categorías desde el s. XVI hasta el s. XXI. Los principales resultados revelan el predominio de un clúster de edificios educativos en términos de superficie (72%), el número de edificios (70%), las emisiones de carbono (68% de los cerca de 42.000 toneladas de CO2) y el consumo de energía (61% de la 38,4 MWh de electricidad consumida, y el 73% del 117,4 MWh de gas natural que se consume). Entre estos niveles de consumo destacan el potencial de ahorro de energía para las escuelas: 186 kWh / m2 / año en promedio, en comparación con la media europea de 100 kWh / m2 / año de energía térmica de uso final. AbstractOver the years building energy performance has become a predominant concern for owners and real estate managers. The focus is usually on residential buildings but in the last twenty years an interest in non-domestic buildings has emerged in the UK. Benchmarks can generally be found at UK scale, although often restricted to England and Wales. This paper aims to provide benchmarks for the Scottish non-domestic building stock as part of the City of Edinburgh Council estate. In this research, the selected sample includes energy data and calculated carbon emissions of 199 buildings. The deciding parameters were the energy use intensity (kWh/m2) and the use and age of buildings. The last two allowed the creation of six clusters in which to group buildings of similar occupancy patterns in four age categories from the 16th to the 21st century. The main findings reveal the predominance of an educational buildings cluster in terms of floor area (72%), number of buildings (70%), carbon emissions (68% of about 42,000 tons of CO2), and energy consumption (61% of the 38.4 MWh of electricity consumed, and 73% of the 117.4 MWh of natural gas consumed). These levels of consumption highlight the energy saving potential for schools: 186 kWh/m2/year on average, in comparison with the European average of 100 kWh/m2/year for thermal end-use energy.


2016 ◽  
Vol 861 ◽  
pp. 198-205
Author(s):  
Anton Pitonak ◽  
Martin Lopusniak

In the members states of the European Union, portion of buildings in the total consumption of energy represents 40%, and their portion in CO2 emissions fluctuates around 35%. The European Union is trying to protect the environment by reducing energy demand and releasing CO2 emissions into the air. Energy performance is the quantity of energy, which is necessary for heating and domestic hot water production, for cooling and ventilation and for lighting. Based on results of energy performance, individual buildings are classified into energy classes A to G. A global indicator (primary energy) is the decisive factor for final evaluation of the building. The new building must meet minimum requirements for energy performance, i.e. it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses effect of the use of different resources of heat in a family house designed according to requirements valid since 2020, and its subsequent classification into an energy class.


Sign in / Sign up

Export Citation Format

Share Document