scholarly journals Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads

Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118072 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Janusz Badur ◽  
Paweł Ziółkowski
2015 ◽  
Vol 47 (1) ◽  
pp. 495-507 ◽  
Author(s):  
Jiangshan Zhang ◽  
Jingshe Li ◽  
Yi Yan ◽  
Zhixin Chen ◽  
Shufeng Yang ◽  
...  

2021 ◽  
Author(s):  
Zakir Hussain ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Abstract The addressed work explains SWCNT (Single walled carbon nanotubnes) and MWCNT (Multi walled carbon nanotubnes) nanofluid flow under the influences of temperature dependent viscosity and mixed convection. Comparative study of SWCN-T and MWCNT suspended in base liquid is presented. Further heat and mass transfer are addressed for nanofluid effected by radiation, heat generation/absorption and diffusion species. Mathematical development of problem is taken in cylindrical coordinates. System of highly nonlinear differential equations are constructed via appropriate transformations. The system of equations are tackled numerically by bvp4c MATLAB solver. The findings of the study show that volume fraction contributes to decline the fluid flow by cylindrical shaped nanoparticles. In addition, fluid flow decelerates via curvature and magnetic parameters while it boots by Grashof number and volume fraction. Further more, temperature dependent viscosity variable corresponds to decrease the temperature close to the surface and it develops away from the surface. The temperature advances in MWCNT-liquid than SWCNT-liquid. Volume fraction and magnetic parameters correspond to skin friction coefficient enhancement. Heat transfer rate increases for larger curvature and heat generation parameters and reverse trend holds against radiation parameter.


Author(s):  
Setyo Hariyadi ◽  
Sutardi Sutardi ◽  
Wawan Aries Widodo ◽  
Bambang Juni Pitoyo

The perfect wing is a dream that many airplanes has manufactured have been striving to achieve since the beginning of the airplane design. There are some aspect that most influence in aircraft design lift, drag, thrust, and weight. The combination of these aspects leads to a decrease in fuel consumption, which reduces pollution in our atmosphere and increase in economic revenue. One way to improve aircraft performance is to modify the tip of the wing geometry, which has become a common sight on today’s airplanes. With computational programs, the effects on drag due to wingtip devices can be previewed. This research was done numerically by using turbulence model k-ω SST. Reynolds number in this research was 2,34 x 10 4 with angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that wingtip fence reduced the strength of vorticity magnitude on the x axis compared to plain wings. The leakage of fluid flow effect at the leading edge corner of the wingtip, giving pressure gradient and slightly shifting towards the trailing edge. this occurs in the plain wing and rearward wingtip fence but does not occur in the forward wingtip fence..


Sign in / Sign up

Export Citation Format

Share Document