Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes

Energy ◽  
2022 ◽  
pp. 123076
Author(s):  
Yachao Wang ◽  
Yi Wen ◽  
Qinggong Zhu ◽  
Jiaxin Luo ◽  
Zhengjun Yang ◽  
...  
2012 ◽  
Vol 538-541 ◽  
pp. 2015-2019
Author(s):  
Zhen Zhe Li ◽  
Xiao Ming Pan ◽  
Ming Ren ◽  
Mei Qin Li ◽  
Gui Ying Shen

With the heightened concern for energy consumption and environment conservation, the interest on fuel cell HEV (hybrid electric vehicle) has been greatly increased. In this study, a numerical model for the cooling system of batteries was constructed. Using the constructed analysis model, the material of the cartridge and the cartridge width were checked for improving the performance of the cooling system of batteries. The performance was changed by using different cartridge material, and the cartridge width also has an effect to the performance of the cooling system of batteries as shown in the analysis results. The constructed model and method can be used to investigate the performance of the cooling system of batteries.


Author(s):  
Tao Gao

Hybrid electric vehicle (HEV) is a kind of new cars with low fuel consumption and low emissions, which combines the advantages of traditional vehicle's long endurance and no-pollution of pure electric vehicles. It represents the future direction of development of vehicle for a period of time. Therefore, the research of HEV technology has important practical significance to the development of China's automobile. This paper takes Shijiazhuang bus as the research object, makes parameter matching according to the parameters of the vehicle, builds the vehicle model using Cruise software, set the simulation task, and studies the control strategy to reduce automobile fuel and pollutant emission targets. The research of this paper has certain directive significance to the modeling and energy optimization of hybrid electric vehicle.


2013 ◽  
Vol 300-301 ◽  
pp. 932-937 ◽  
Author(s):  
Xiao Xia Sun ◽  
Yi Chun Wang ◽  
Chun Ming Shao ◽  
Yu Feng Wu ◽  
Guo Zhu Wang

Advanced thermal management system (TMS) has the potential to increase the life of the vehicle’s propulsion, and meanwhile, decrease fuel consumption and pollutant emission. In this paper, an advanced TMS which is suitable for a series-parallel hybrid electric vehicle (SPHEV) is presented. Then a numerical TMS model which can predict the thermal responses of all TMS components and the temperatures of the engine and electric components is developed. By using this model, the thermal response of the TMS over a realistic driving cycle is simulated. The simulation result shows that the TMS can fulfill the heat dissipation requirement of the whole vehicle under different driving conditions. It also demonstrates that a numerical model of TMS for SPHEV is an effective tool to assess design concepts and architectures of the vehicle system during the early stage of system development.


2014 ◽  
Vol 1044-1045 ◽  
pp. 549-552
Author(s):  
Hao Ming Zhang ◽  
Ying Hai Wang ◽  
Lian Soon Peh

Abstract. Hybrid electric vehicle adopt hybrid electric power, can reduce the waster emission and energy consumption, which can solve the present problem of environmental pollution and energy consume. New type HEV based on composite electric power is proposed.To improve the performance of the system, Halbach PMSM is used instead of traditional PMSM, experimental results show its merits.


Sign in / Sign up

Export Citation Format

Share Document