Pounding mitigation of a short-span cable-stayed bridge using a new hybrid passive control system

2022 ◽  
Vol 134 ◽  
pp. 625-636
Author(s):  
Ahad Javanmardi ◽  
Khaled Ghaedi ◽  
Zainah Ibrahim ◽  
Fuyun Huang ◽  
Mieczysław Kuczma ◽  
...  
2014 ◽  
Vol 6 (5) ◽  
pp. 495-514 ◽  
Author(s):  
Fangfang Geng ◽  
Youliang Ding ◽  
Jianyong Song ◽  
Wanheng Li ◽  
Aiqun Li

2018 ◽  
Vol 148 ◽  
pp. 416-423 ◽  
Author(s):  
T. Capurso ◽  
G. Menchise ◽  
G. Caramia ◽  
S.M. Camporeale ◽  
B. Fortunato ◽  
...  

Author(s):  
BG Kavyashree ◽  
Shantharam Patil ◽  
Vidya S. Rao

AbstractPermanent construction has evolved from the Palaeolithic age to today’s skyscrapers. Constructing the structure, which promises occupants safety, has become a concern because of the uncertainties in nature. Therefore in recent years, attention has been given to the development of structural protective devices that could take care of the external loads. Structural control against the wind and earthquake load has been seriously studied where the structure behaves differently for wind and earthquake load has been briefly discussed in this paper. Initially, paper discusses the history of the construction and the passive control system, which was used in structural control, is briefly discussed in this paper. Also, the implementation of active control has been discussed which was introduced later in the structural control for more effective control. But the limitations of the passive and active control system have introduced semi-active control and also the hybrid control strategy. The two mechanisms are put together in the semi-active and hybrid system to obtain all advantages of the algorithm along with overcoming their limitations. The review also briefs about stochastic vibrational control of the structure where randomness is considered in external loads, parameter of the system and also in the external devices which are implemented in the structural control. As construction sector is a complex system, big data analysis, a new field in structural control system is discussed and future scope is also mentioned.


Author(s):  
Liang Liu ◽  
Tao Zhou ◽  
Jie Chen ◽  
Ali Shahzad Muhammad ◽  
Juan Chen ◽  
...  

In this paper, operating characteristics of the safety system of Chinese Supercritical Water-cooled Reactor (CSR1000) is described. Selecting CSR1000 as the focus of research, and it’s active and passive safety systems are analyzed in turn. A comparison is given between these two types of safety systems. Henceforth, the features of the safety control systems of CSR1000 are obtained. The results show that for the active systems, the control speed of the pressure control system is the fastest and that of the power control system is the slowest. It is observed that the active control system exhibits simple harmonic oscillation. On the other hand, the control feature of passive control system is stable. In addition, coupling the safety systems can ensure the safety of CSR1000 in the event of a loss of flow accident (LOFA).


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jesús U. Liceaga-Castro ◽  
Irma I. Siller-Alcalá ◽  
Eduardo Liceaga-Castro ◽  
Luis A. Amézquita-Brooks

Via several cases of study it is shown that a passive multivariable linear control system, contrary to its single input single output counterpart, may not be robust. Moreover, it is shown that lack of robustness can be exposed via the multivariable structure function.


1999 ◽  
Vol 15 (2) ◽  
pp. 317-330 ◽  
Author(s):  
Yuri Ribakov ◽  
Jacob Gluck

Incorporated at various levels of a structural frame, ADAS devices may be used to improve the response of the structure during earthquakes. A design method of a passive control system for multistory structures using optimal Adding Damping And Stiffness (ADAS) dampers is presented. Optimal Control Theory (OCT) is commonly used to obtain the levels of viscous damping at each story. The optimization leads to different levels of damping at each story. Therefore, a solution with viscous dampers is inconvenient and can be expensive. The proposed method enables the use of relatively less expensive optimal ADAS devices dissipating energy which is equivalent to that of viscous dampers. The method is examined in a numerical analysis of a seven-story shear framed structure. Significant improvement was obtained in the behavior of the ADAS damped structure compared to the uncontrolled one.


Sign in / Sign up

Export Citation Format

Share Document