Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone—Part II: Numerical calculations and interpretation of the test results

2006 ◽  
Vol 73 (3) ◽  
pp. 283-295 ◽  
Author(s):  
M. Reytier ◽  
S. Chapuliot ◽  
S. Marie ◽  
M. Nédélec
2012 ◽  
Vol 190-191 ◽  
pp. 1295-1301 ◽  
Author(s):  
Xiu Mei Qi ◽  
Chuang Kuan Gao ◽  
Zeng Qiang Zhang

The paper considers the effect of lubricant viscosity, ν, on the contact fatigue life, N, in gearing applications. More than 40 sets of the thermal non-Newtonian EHL numerical calculations and six sets of disc fatigue tests under the conditions ranging from the mixed to full film lubrication are used. The results show that for improving gearing fatigue life it is generally useful to increase lubricant viscosity. But it is not simply the case that the higher the lubricant viscosity, the better. When lubricant viscosity, ν, is less than a critical value, νcr, a quantitative relation of is seen in the test results; When ν > νcr, however, increasing lubricant viscosity is found to reduce the fatigue life. Based on this result, the paper raises questions concerning the accuracy of the lubrication factor recommended by ISO/6336:1996.


1986 ◽  
Vol 51 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Gordon Bronitsky ◽  
Robert Hamer

Prehistoric potters used a wide variety of materials as temper, or filler. Although temper selection has often been assumed to be the result of purely cultural factors, recent research indicates temper had technological functions as well. Impact and thermal-shock resistance data of a range of kinds, grades, and amounts of temper are presented. Test results indicate that the use of finely-ground tempers in general and burned shell temper in particular produce briquettes that are significantly more durable than briquettes incorporating other materials.


Author(s):  
M. Reytier ◽  
S. Chapuliot ◽  
M. Ne´de´lec

In order to study the effects of a sudden cooling in a thick hot structure, such as the vessel of a pressurised water reactor, a specially-adapted compact tension specimen has been developed. It consists of a CT50 (2T-CT specimen) with holes through the specimen to cool the crack tip locally by liquid nitrogen. Therefore, this new test allows to study in details different loading-temperature histories near the brittle/ductile transition zone which may put the classical crack intiation criteria in the wrong. First, this article describes in details two tests for which a cleavage rupture has been obtained during the thermal shock on this 16MND5 steel. Either the Crack Mouth Opening Displacement was maintained during the test or the applied load. Then, numerical calculations have been realised in order to estimate the local mechanical fields at the crack tip and to evaluate the global fracture mechanics parameters. Thanks to these tests and these thermal and mechanical simulations, a work is done on rupture criteria under thermal shocks by using either the “Master Curve” approach or the Beremin model.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Petrillo ◽  
Eugenio Lippiello ◽  
François P. Landes ◽  
Alberto Rosso

2021 ◽  
Author(s):  
Matthew Joseph Comeau ◽  
Michael Becken ◽  
James A. D. Connolly ◽  
Alexander Grayver ◽  
Alexey V. Kuvshinov ◽  
...  

<p>We investigate how a conceptual hydrodynamic model consisting of fluid localization and stagnation by thermally activated compaction can explain low-resistivity anomalies observed in the lower crust (>20 km depth). Electrical resistivity models, derived from magnetotelluric data collected across the intracontinental Bulnay region, a subset of a larger regional array across central Mongolia, are generated. They reveal low-resistivity (3 - 30 Ωm) domains with a width of ~25 km and a vertical extent of <10 km in the lower crust, with their tops ~5 km below the brittle-ductile transition zone. In 3-D these features appear as laterally extended (tube-like) structures, 300 km long, rather than disconnected ellipsoids. The features are oriented parallel to the adjacent Bulnay fault zone segments and perpendicular to the far-field compressive tectonic stress (i.e., northward motion from China and Tibet). These low-resistivity domains are consistent with the presence of saline metamorphic fluids. Deeper features imaged with the data include a large upper mantle conductor that we attribute to an asthenospheric upwelling, and thin lithosphere, related to intraplate surface uplift and volcanism, in agreement with recent geodynamic modelling of lithospheric removal in this region.</p><p>Based on the observed thermal structure of the crust, and assuming the mean stress at the brittle-ductile transition is twice the vertical load, the hydrodynamic model predicts that fluids would collect in zones <9 km below the brittle-ductile transition zone, and the zones would have a vertical extent of ~9 km, both in agreement with the resistivity models across the Bulnay region. The hydrodynamic model also gives plausible values for the activation energy for viscous creep (270 - 360 kJ/mol), suggesting that the mechanism is dislocation creep.</p><p>From the electrical resistivity models, the lower crustal viscous compaction-length is constrained to be ~25 km - in this region. Within the conceptual model, this length-scale is entirely consistent with independent estimates for the specific hydraulic and rheological properties of this region. In fact, this can be used to independently constrain acceptable ranges for the lower crustal effective viscosity, which is found to be low (on the order of 10^18 Pas). Accordingly, the results indicate that low-salinity fluids (likely 1 - 0.01 wt% NaCl), and correspondingly low porosities (likely 5 - 0.1 vol%), are the most plausible. These key findings suggest partial melts are not favoured to explain the anomalies. Overall, the results of this contribution imply that it is tectonic and compaction processes that control lower crustal fluid flow, rather than lithological or structural heterogeneity.</p>


1989 ◽  
Vol 111 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. Yagawa ◽  
Y. Ando ◽  
K. Ishihara ◽  
T. Iwadate ◽  
Y. Tanaka

An urgent problem for nuclear power plants is to assess the structural integrity of the reactor pressure vessel under pressurized thermal shock. In order to estimate crack behavior under combined force of thermal shock and tension simulating pressurized thermal shock, two series of experiments are demonstrated: one to study the effect of material deterioration due to neutron irradiation on the fracture behavior, and the other to study the effect of system compliance on fracture behavior. The test results are discussed with the three-dimensional elastic-plastic fracture parameters, J and Jˆ integrals.


Sign in / Sign up

Export Citation Format

Share Document