Numerical analysis for piezoelectric crack under varied boundary conditions by optimized hybrid element method

2006 ◽  
Vol 73 (5) ◽  
pp. 649-670 ◽  
Author(s):  
Dan Wu ◽  
C.C. Wu
2014 ◽  
Vol 638-640 ◽  
pp. 755-758
Author(s):  
Shao Jun Huo ◽  
Fu Guo Tong ◽  
Gang Liu

The dam foundation seepage control is usually a main work of dam design. This paper presented the effects of different concrete curtain boundary conditions on the dam foundation seepage control through numerical calculation with the finite element method. The results show that the depth of concrete curtain strongly depends on the permeability of dam foundation. The middle of curtain should be deeper than its sides if the permeability of central riverbed is higher. Therefore the design of curtain should be based on the numerical analysis of the dam foundation seepage with different curtain boundary conditions in order to make sure the safety and economy.


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Author(s):  
Katarzyna Cegiełka ◽  
Piotr Dniestrzański ◽  
Janusz Łyko ◽  
Arkadiusz Maciuk ◽  
Maciej Szczeciński

AbstractOne of the main problems of practical applications of degressively proportional allocations of goods and burdens is lack of uniqueness of this principle. Even under given boundary conditions of allocation, i.e. determined minimal and maximal amounts of a good that can be assigned in a given allocation, there are usually many feasible solutions. The lack of formal rules of allocation is the reason why the allocation is typically a result of negotiations among its agents. A number of allocations favor some of agents or their groups, therefore other agents cannot accept them. The aim of this paper is to indicate a way of reducing the set of all feasible solutions exclusively to those that are neutral to all agents. As a result of the term of lexicographic preference of allocation agents defined on the basis of the relation theory followed by a numerical analysis of sets of all feasible solutions, it is possible to determine a core of this set in the form of a subset of all feasible solutions that are acceptable by all agents. In addition, this subset can be further divided into smaller subsets with regard to the degree of acceptance of their elements. Theoretical analysis is complemented by case studies, one of which is application of this idea to the allocation of seats in the European Parliament among the member states of the European Union.


1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


Sign in / Sign up

Export Citation Format

Share Document