Cyclic fatigue life characteristics of ceramic balls under variable thermal shock loadings

Author(s):  
Shinya Matsuda ◽  
Jinya Takenaka ◽  
Kimito Arii ◽  
Keiji Ogi
2015 ◽  
Vol 41 (11) ◽  
pp. 1867-1870 ◽  
Author(s):  
Alessandro Scattina ◽  
Mario Alovisi ◽  
Davide Salvatore Paolino ◽  
Damiano Pasqualini ◽  
Nicola Scotti ◽  
...  

2010 ◽  
Vol 120 (5) ◽  
pp. 2497-2507 ◽  
Author(s):  
F. Saeed ◽  
A. Ansarifar ◽  
R. J. Ellis ◽  
Y. Haile-Meskel ◽  
A. S. Farid

2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


1981 ◽  
Vol 103 (1) ◽  
pp. 90-98 ◽  
Author(s):  
J. D. Stachiw ◽  
R. B. Dolan ◽  
D. L. Clayton

An acrylic plastic spherical pressure hull incorporating polycarbonate inserts for mounting of penetrators has been built and pressure tested. The transparent hull will serve as one atmosphere cockpit in Johnson-Sea-Link #3 submersible for 2500 ft. service. Tests have been conducted with model scale polycarbonate inserts in acrylic plastic spherical pressure hulls and windows to evaluate the structural integrity and cyclic fatigue life of polycarbonate plastic inserts and acrylic shells in which they are mounted under repeated hydrostatic pressurizations. Test results indicate that the short term, long term and cyclic fatigue life of a polycarbonate insert, serving as a bulkhead for electric or hydraulic penetrators in spherical acrylic plastic pressure hulls or windows, exceeds that of the acrylic plastic shell in which it is mounted. Structural parameters of polycarbonate inserts are discussed and design criteria formulated for their utilization in manned submersibles and pressure vessels for human occupancy. Particular emphasis is placed on selection of material, seal configuration, and retainment design.


1976 ◽  
Vol 98 (2) ◽  
pp. 537-549 ◽  
Author(s):  
J. D. Stachiw

NEMO Mod 2000 acrylic plastic pressure hull assembly represents the latest addition to the NEMO hull series represented by NEMO Mod 600 and 1000 hull assemblies. The 66 in. OD × 58 in. ID spherical acrylic hull with aluminum hatches has successfully withstood 24 hr long external hydrostatic pressurizations to 450, 900, 1350, and 1800 psi. Pressure cycling and short term destructive testing of 15 in. OD × 13 in. ID scale models has shown that the crackfree fatigue life is in excess of 1000 pressure cycles to 1500 psi and the short term implosion pressure is in the range of 4750–5000 psi. Stress wave emissions have been found to be a good indicator of incipient failure. NEMO Mod 2000 spherical pressure hulls with panoramic visibility are considered to be acceptable for manned submersibles with 3000 ft operational depth capability. The cyclic fatigue life of such hulls is conservatively predicted to be at least 12 × 106 ft hr.


2013 ◽  
Vol 740 ◽  
pp. 319-322 ◽  
Author(s):  
Young Choon Lee ◽  
Nam Jin Jeon ◽  
Cheol Kim ◽  
Seo Yeon Ahn ◽  
Myung Jae Cho

Finite element analysis was accomplished for a steering knuckle component of a small bus to see whether the static and fatigue strength requirements were satisfied or not. The knuckle was modeled with ANSYS 10-node quadratic elements. The cyclic fatigue load was applied and Soderberg criteria were applied to check the fatigue life. The knuckle structure has an infinite life (10-6 cycle) judging from the fatigue analyses. Shape optimization based on the gradient based method has been performed in order to find out the knuckle shape that has a minimum weight and satisfies the static and fatigue strength requirements. As a result of shape optimization, the weight of the steering knuckle was reduced 8%.


Sign in / Sign up

Export Citation Format

Share Document