Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications

2008 ◽  
Vol 30 (6) ◽  
pp. 1647-1658 ◽  
Author(s):  
Lin-Hai Han ◽  
Wen-Da Wang ◽  
Xiao-Ling Zhao
2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2016 ◽  
Vol 7 (4) ◽  
pp. 316-327
Author(s):  
Serdar Selamet ◽  
Caner Bolukbas

Purpose This paper aims to present a numerical investigation on the fire performance of a single plate shear connection in a steel-framed composite floor. Large-scale fire experiments show that the tensile membrane action of the concrete slab enhances the fire performance of composite floors. The enhancement in the performance is contributed to large slab deflections. However, these deflections cause significant rotations and tensile force in the single plate connection. Design/methodology/approach A finite element model is constructed, which consists of a secondary steel beam, concrete slab and shear connection components. The interaction between the connection components such as bolts and single plate is defined by contact surfaces. The analysis is conducted in two uncoupled phases: thermal analysis by creating fire boundaries on the composite floor model with convective and radiative heat transfer, and mechanical analysis by considering thermal expansion and changes in the material stiffness and strength due to temperature. Findings The thermo-mechanical analysis of the composite floor finite element model shows that the structure survives the 2-h Standard fire, but the connection fails by bolt shear and buckling of the connection plate. Originality/value This paper investigates the fire performance of a shear connection in a steel-framed concrete slab. Previous work generally focused on the concrete slab behavior only. The originality of the research is that the connection is considered as part of a sub-assembly and is subjected to forces due to concrete and steel beam interaction.


Author(s):  
R. G. Azevedo ◽  
I. Chen ◽  
O. M. O’Reilly ◽  
A. P. Pisano

In order to determine the influence of the silicon chip substrate on measurement fidelity in a silicon MEMS micro-extensometer, finite element modeling of strain transfer efficiency from a steel beam through a bond layer and silicon chip is investigated over a range of chip and steel beam geometries under both axial and pure bending load conditions. The finite element model results are verified against experimental data. An analytical model that incorporates both influence of the bonded substrate on the effective load and shear-lag phenomenon in the bond is developed and is shown to compare favorably to the finite element model over a wide range of chip and beam geometries. Based on these results, a partially-trenched silicon chip is also investigated as an alternate means of locally enhancing the strain transfer to the micro-extensometer without compromising the ability of the substrate to act as part of the encapsulation of moving elements of the micro-extensometer from the environment. The partially-trenched substrate in bending is experimentally shown to generate strains that are 118% of the strain applied to the substrate—a 23% percent improvement over the equivalent unpatterned substrate geometry.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document