Fire performance of single plate shear connections in a composite floor

2016 ◽  
Vol 7 (4) ◽  
pp. 316-327
Author(s):  
Serdar Selamet ◽  
Caner Bolukbas

Purpose This paper aims to present a numerical investigation on the fire performance of a single plate shear connection in a steel-framed composite floor. Large-scale fire experiments show that the tensile membrane action of the concrete slab enhances the fire performance of composite floors. The enhancement in the performance is contributed to large slab deflections. However, these deflections cause significant rotations and tensile force in the single plate connection. Design/methodology/approach A finite element model is constructed, which consists of a secondary steel beam, concrete slab and shear connection components. The interaction between the connection components such as bolts and single plate is defined by contact surfaces. The analysis is conducted in two uncoupled phases: thermal analysis by creating fire boundaries on the composite floor model with convective and radiative heat transfer, and mechanical analysis by considering thermal expansion and changes in the material stiffness and strength due to temperature. Findings The thermo-mechanical analysis of the composite floor finite element model shows that the structure survives the 2-h Standard fire, but the connection fails by bolt shear and buckling of the connection plate. Originality/value This paper investigates the fire performance of a shear connection in a steel-framed concrete slab. Previous work generally focused on the concrete slab behavior only. The originality of the research is that the connection is considered as part of a sub-assembly and is subjected to forces due to concrete and steel beam interaction.

2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2020 ◽  
Vol 11 (4) ◽  
pp. 579-589
Author(s):  
Muhamad Husnain Mohd Noh ◽  
Mohd Akramin Mohd Romlay ◽  
Chuan Zun Liang ◽  
Mohd Shamil Shaari ◽  
Akiyuki Takahashi

PurposeFailure of the materials occurs once the stress intensity factor (SIF) overtakes the material fracture toughness. At this level, the crack will grow rapidly resulting in unstable crack growth until a complete fracture happens. The SIF calculation of the materials can be conducted by experimental, theoretical and numerical techniques. Prediction of SIF is crucial to ensure safety life from the material failure. The aim of the simulation study is to evaluate the accuracy of SIF prediction using finite element analysis.Design/methodology/approachThe bootstrap resampling method is employed in S-version finite element model (S-FEM) to generate the random variables in this simulation analysis. The SIF analysis studies are promoted by bootstrap S-version Finite Element Model (BootstrapS-FEM). Virtual crack closure-integral method (VCCM) is an important concept to compute the energy release rate and SIF. The semielliptical crack shape is applied with different crack shape aspect ratio in this simulation analysis. The BootstrapS-FEM produces the prediction of SIFs for tension model.FindingsThe mean of BootstrapS-FEM is calculated from 100 samples by the resampling method. The bounds are computed based on the lower and upper bounds of the hundred samples of BootstrapS-FEM. The prediction of SIFs is validated with Newman–Raju solution and deterministic S-FEM within 95 percent confidence bounds. All possible values of SIF estimation by BootstrapS-FEM are plotted in a graph. The mean of the BootstrapS-FEM is referred to as point estimation. The Newman–Raju solution and deterministic S-FEM values are within the 95 percent confidence bounds. Thus, the BootstrapS-FEM is considered valid for the prediction with less than 6 percent of percentage error.Originality/valueThe bootstrap resampling method is employed in S-FEM to generate the random variables in this simulation analysis.


2020 ◽  
Vol 72 (5) ◽  
pp. 687-693
Author(s):  
Liuqing Yang ◽  
Ming Hu ◽  
Deming Zhao ◽  
Jing Yang ◽  
Xun Zhou

Purpose The purpose of this paper is to develop a novel method for analyzing wheel-rail (W-R) contact using thermo-mechanical measurements and study the effects of heating on the characteristics of W-R contact under different creepages. Design/methodology/approach This study developed an implicit-explicit finite element (FE) model which could solve both partial slip and full sliding problems by setting different angular velocities on the wheels. Based on the model, four material types under six different creepages were simulated. Findings The results showed that frictional heating significantly affected the residual stress distribution under large creepage conditions. As creepage increased, the temperature of the wheel tread and rail head rose and the peak value was located at the trailing edge of the contact patch. Originality/value The proposed FE model could reduce computational time and thus cost to about one-third of the amount commonly found in previous literature. Compared to other studies, these results are in good agreement and offer a reasonable alternative method for analyzing W-R contact under various conditions. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0298


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


2014 ◽  
Vol 34 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Gang Liu ◽  
Wei Tang ◽  
Ying-Lin Ke ◽  
Qing-Liang Chen ◽  
Yunbo Bi

Purpose – The purpose of this paper is to propose a new model for optimizing pre-joining processes quickly and accurately, guiding workers to standardized operations. For the automatic riveting in panel assemblies, the traditional approach of determination of pre-joining processes entirely rests on the experience of workers, which leads to the improper number, location and sequence of pre-joining, the low quality stability and the high repair rate in most cases. Design/methodology/approach – The clearances computation with the complete finite element model for every process combination is time-consuming. Therefore a fast pre-joining processes optimization model (FPPOM) is proposed. This model treats both the measured initial clearances and the stiffness matrices of key points of panels as an input; considers the permissive clearances as an evaluation criterion; regards the optimal number, location and sequence as an objective; and takes the neighborhood-search-based adaptive genetic algorithm as a solution. Findings – A comparison between the FPPOM and complete finite element model with clearances (CFEMC) was made in practice. Further, the results indicate that running the FPPOM is time-saving by >90 per cent compared with the CFEMC. Practical implications – This paper provides practical insights into realizing the pre-joining processes optimization quickly. Originality/value – This paper is the first to propose the FPPOM, which could simplify the processes, reduce the degrees of freedom of nodes and conduct the manufacturers to standardized manipulations.


2017 ◽  
Vol 89 (2) ◽  
pp. 274-279
Author(s):  
Thomas Wright ◽  
Imran Hyder ◽  
Mitchell Daniels ◽  
David Kim ◽  
John P. Parmigiani

Purpose The purpose of this paper is to determine which of the ten material properties of the Hashin progressive damage model significantly affect the maximum load-carrying ability of center-notched carbon fiber panels under in-plane tension and out-of-plane bending. Design/methodology/approach The approach used is to calculate the maximum load using a finite element model for a range of material property values as specified by a fraction factorial design. The finite element model used has been experimentally validated in prior work. Findings Results showed that for the laminates considered, at most three and as few as one of the ten Hashin material properties significantly affected the magnitude of the maximum load. Practical implications While the results of this paper only specifically apply to the laminates included in the study, the results suggest that, in general, only a small number of the Hashin material properties affect laminate load-carrying ability. Originality/value Knowing which properties are significant is of value in selecting materials to optimize performance and also in determining which properties need to be known to a high accuracy.


Sign in / Sign up

Export Citation Format

Share Document