Inelastic buckling load of a locally weakened reinforced concrete column

2012 ◽  
Vol 34 ◽  
pp. 278-288 ◽  
Author(s):  
N. Krauberger ◽  
S. Bratina ◽  
M. Saje ◽  
S. Schnabl ◽  
I. Planinc
Author(s):  
Urška Bajc ◽  
Miran Saje ◽  
Tomaž Hozjan ◽  
Igor Planinc ◽  
Sebastjan Bratina

The influence of the cross-sectional dimensions on the buckling load capacity of reinforced concrete column exposed to ISO fire load is presented. The fire analysis is divided in two separate phases. In the first phase, the calculation of the temperatures over the cross-section of the concrete column is performed. Here more advanced hygro-thermal analysis is executed to take into account the influence of moisture on the distribution of the temperatures. In the second step of the fire analysis, the mechanical analysis is performed. The mechanical and thermal properties of concrete and reinforcement at elevated temperatures are used in accordance with EN 1992-1-2 (2004). For two different cross-sections, the parametric study has been performed. The critical buckling time and critical buckling capacity as a function of a load and slenderness of reinforced concrete column have been determined.


2012 ◽  
Vol 226-228 ◽  
pp. 1436-1440
Author(s):  
Li Jun Gao ◽  
Yong Sheng Zhang ◽  
Qin Li

In this paper, dynamic measurement method is applied to test the damage of the bottom reinforced concrete column. The comparison between the calculated first order frequency of the bottom reinforced concrete column and the measured first order frequency shows that the result is consistent. This indicates that this approach is feasible. However, in recent years, dynamic measurement method is widely used in non-destructive testing of bridges and floors. The principle of the dynamic measurement method for the detection of reinforced concrete column utilizes the measured natural frequency, vibration model and damping ratio of reinforced concrete column and such inherent dynamic characteristics of indicators to reflect the damage of reinforced concrete column. And there is no secondary injury for the column. The simplified method of structure dynamics is applied to calculate the frequency of the bottom reinforced concrete column. And the simple calculation method is verified by experiment and practice.


Sign in / Sign up

Export Citation Format

Share Document