Seismic design of three damage-resistant reinforced concrete shear walls detailed with self-centering reinforcement

2020 ◽  
Vol 211 ◽  
pp. 110277
Author(s):  
Mohammad J. Tolou Kian ◽  
Carlos A. Cruz-Noguez
Prostor ◽  
2021 ◽  
Vol 29 (1 (61)) ◽  
pp. 42-55
Author(s):  
Cengiz Özmen

Seismic codes include strict requirements for the design and construction of mid-rise reinforced concrete residential buildings. These requirements call for the symmetric and regular arrangement of the structural system, increased cross-sections for columns, and the introduction of shear walls to counteract the effects of lateral seismic loads. It is challenging for architects to reconcile the demands of these codes with the spatial arrangement and commercial appeal of their designs. This study argues that such reconciliation is possible through an architectural analysis. First, the effectiveness of applying the seismic design principles required by the codes is demonstrated with the comparative analysis of two finite element models. Then three pairs of architectural models, representing the most common floor plan arrangements for such buildings in Turkey, are architecturally analyzed before and after the application of seismic design principles in terms of floor area and access to view. The results demonstrate that within the context defined by the methodology of this study, considerable seismic achievement can be achieved in mid-rise reinforced concrete residential buildings by the application of relatively few, basic design features by the architects.


2020 ◽  
Vol 10 (12) ◽  
pp. 4075
Author(s):  
Seong-Ha Jeon ◽  
Ji-Hun Park

The seismic performance of ordinary reinforced concrete shear walls, that are commonly used in high-rise residential buildings in Korea (h < 60 m), but are prohibited for tall buildings (h ≥ 60 m), is evaluated in this research project within the framework of collapse probability. Three bidimensional analytical models comprised of both coupled and uncoupled shear walls exceeding 60 m in height were designed using nonlinear dynamic analysis in accordance with Korean performance-based seismic design guidelines. Seismic design based on nonlinear dynamic analysis was performed using different shear force amplification factors in order to determine an appropriate factor. Then, an incremental dynamic analysis was performed to evaluate collapse fragility in accordance with the (Federal Emergency Management Agency) FEMA P695 procedure. Four engineering demand parameters including inter-story drift, plastic hinge rotation angle, concrete compressive strain and shear force were introduced to investigate the collapse probability of the designed analytical models. For all analytical models, flexural failure was the primary failure mode but shear force amplification factors played an important role in order to meet the requirement on collapse probability. High-rise ordinary reinforced concrete shear walls designed using seven pairs of ground motion components and a shear force amplification factor ≥ 1.2 were adequate to satisfy the criteria on collapse probability and the collapse margin ratio prescribed in FEMA P695.


Mechanika ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 146-152
Author(s):  
Mário Rui Tiago Arruda ◽  
Bruno Lopes ◽  
Mário Ferreira ◽  
Tadas Zingaila

The aim of this work is to show the main differences which exist, taking in to account the influence of the type of finite element used, when performing pushover analysis of reinforced concrete structures. The non-linear analysis was performed using FE software SAP2000, and the results were extracted from models including Frame and Shell elements, respectively. Several reinforced concrete structures were modelled with Frame elements and Shell elements, which will be further presented. Therefore, it was possible to validate the results obtained from the analysis, also to identify certain restrictions according to the type of finite element used in the modelling of the resistant walls. In the first phase, three isolated structural walls were modelled with distinct geometries. The first one presents a rectangular shape, the second – “L” shape and the third one “U” shape. The application of pushover analysis through the different examples presented in this document, intends to validate the results obtained for the Shell elements. Subsequently, the same kind of analysis was performed on a building. These examples intend to show that the performance of ductility is strongly dependent from the type of element, which is not taken into account in the pushover analysis nowadays. N2 method was applied to all examples, in order to understand the differences in the structures seismic design, according to the type of element used in the modelling. The results are compared, and the differences are identified. As well as, the limitations of applicability of Shell elements in the modelling of structural walls were determined.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 281-299 ◽  
Author(s):  
John W. Wallace ◽  
Leonardo M. Massone ◽  
Patricio Bonelli ◽  
Jeff Dragovich ◽  
René Lagos ◽  
...  

In 1996, Chile adopted NCh433.Of96, which includes seismic design approaches similar to those used in ASCE 7-10 (2010) and a concrete code based on ACI 318-95 (1995) . Since reinforced concrete buildings are the predominant form of construction in Chile for buildings over four stories, the 27 February 2010 earthquake provides an excellent opportunity to assess the performance of reinforced concrete buildings designed using modern codes similar to those used in the United States. A description of observed damage is provided and correlated with a number of factors, including relatively high levels of wall axial load, the lack of well-detailed wall boundaries, and the common usage of flanged walls. Based on a detailed assessment of these issues, potential updates to U.S. codes and recommendations are suggested related to design and detailing of special reinforced concrete shear walls.


2010 ◽  
Vol 136 (12) ◽  
pp. 1471-1482 ◽  
Author(s):  
Marwan T. Shedid ◽  
Wael W. El-Dakhakhni ◽  
Robert G. Drysdale

PCI Journal ◽  
2014 ◽  
Vol 59 (3) ◽  
pp. 43-59 ◽  
Author(s):  
Brian J. Smith ◽  
Yahya C. Kurama

Author(s):  
G. Michele Calvi ◽  
Daniel P. Abrams ◽  
Hugo Bachmann ◽  
Shaoliang Bai ◽  
Patricio Bonelli ◽  
...  

Author(s):  
Herian Leyva ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Julián Carrillo ◽  
...  

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document