Nonlinear dynamic response of a wire rope isolator: Experiment, identification and validation

2021 ◽  
Vol 238 ◽  
pp. 112121
Author(s):  
Andrea Salvatore ◽  
Biagio Carboni ◽  
Li-Qun Chen ◽  
Walter Lacarbonara
Author(s):  
Andrea Arena ◽  
Biagio Carboni ◽  
Walter Lacarbonara

The nonlinear dynamic response of short cables with a tip mass subject to base excitations and undergoing primary resonance is investigated via experimental tests and by employing an ad hoc nonlinear mechanical model. The considered cables are made of several strands of steel wires twisted into a helix forming composite ropes in a pattern known as ‘laid ropes’. Such short span ropes exhibit a hysteretic behavior due to the inter-wire frictional sliding. A nonlinear one-dimensional (1D) continuum model based on the geometrically exact Euler-Bernoulli beam theory is conveniently adapted to describe the cable dynamic response. The Bouc-Wen law of hysteresis is incorporated in the moment-curvature constitutive relationship to reproduce the hysteretic behavior of short steel wire ropes subject to flexural cycles. The frequency response curves show a pronounced softening nonlinearity induced by hysteresis and inertia nonlinearity as confirmed by the experimental data acquired on a wire rope with a tip mass excited at its base by a shaker. The experimental nonlinear resonance response will be exploited to identify the constitutive parameters of the wire rope that best fit the frequency response curves at various forcing amplitudes.


Author(s):  
Wenyong Tang ◽  
Tianlin Wang ◽  
Shengkun Zhang

In this paper, the nonlinear dynamic response and buckling of damaged composite pipes under radial impact is investigated. A model involving initial geometric deformation, delamination and sub-layer matrix damage is set up for theoretical analysis. Based on the first order shear deformation theory, the nonlinear dynamic equations of the composite pipe considering transverse shear deformation and initial geometric imperfections are obtained by Hamilton’s theory and solved by a semi-analytical finite difference method. The effects of damage on the dynamic response and buckling of composite pipes are discussed.


2017 ◽  
Vol 21 (8) ◽  
pp. 2816-2845 ◽  
Author(s):  
Nguyen D Duc ◽  
Ngo Duc Tuan ◽  
Phuong Tran ◽  
Tran Q Quan ◽  
Nguyen Van Thanh

This study follows an analytical approach to investigate the nonlinear dynamic response and vibration of eccentrically stiffened sandwich functionally graded material (FGM) cylindrical panels with metal–ceramic layers on elastic foundations in thermal environments. It is assumed that the FGM cylindrical panel is reinforced by the eccentrically longitudinal and transversal stiffeners and subjected to mechanical and thermal loads. The material properties are assumed to be temperature dependent and graded in the thickness direction according to a simple power law distribution. Based on the Reddy’s third-order shear deformation shell theory, the motion and compatibility equations are derived taking into account geometrical nonlinearity and Pasternak-type elastic foundations. The outstanding feature of this study is that both FGM cylindrical panel and stiffeners are assumed to be deformed in the presence of temperature. Explicit relation of deflection–time curves and frequencies of FGM cylindrical panel are determined by applying stress function, Galerkin method and fourth-order Runge-Kutta method. The influences of material and geometrical parameters, elastic foundations and stiffeners on the nonlinear dynamic and vibration of the sandwich FGM panels are discussed in detail. The obtained results are validated by comparing with other results in the literature.


Sign in / Sign up

Export Citation Format

Share Document