Time-dependent behaviour of circular steel tube confined reinforced concrete (STCRC) stub columns subjected to low axial load

2021 ◽  
Vol 243 ◽  
pp. 112663
Author(s):  
Yun-Long Guo ◽  
Yue Geng ◽  
Lian-Yu Qu

Modern concrete structures, realized through complex sequential construction techniques and/or characterized by significant non-homogeneities, are in general very sensitive to the effects of time-dependent behaviour of concrete (creep and shrinkage). Guidelines for the evaluation of these effects were developed in the last decades by international pre-standard and standard institutions on the basis of a common, although progressively evolving, scientific background, and of a substantially worldwide harmonized format. The author discusses the development, with his large personal involvement, of this favourable scenario, evidencing areas of well established consensus and open problems. One pending problem is still represented by the uncertainties of prediction models, with particular regards to the multi-decade long-term prediction of creep. In what concerns the evaluation of the structural effects of creep, it is commonly accepted that a reliable analysis of the structural response in service conditions may be performed on the basis of the theory of ageing linear viscoelasticity, first established by Italian mathematician V. Volterra at the dawn of 20th century. The paper discusses the computational implications of this approach with reference on the one hand to the adoption of realistic advanced models for the prediction of the creep behaviour of concrete, and, on the other hand, to the complexity and sequential character of the constructions, and illustrates current updated guidelines developed at the international level for the evaluation of the effects of creep, both in the conceptual and preliminary design stages and in the subsequent detailed construction-stage and long-term reliability analyses of complex and sequential structures. These guidelines are intended to deal also with other phenomena, which are responsible of causing deviations from aging linear viscoelasticity, like tensile cracking, cyclic creep, and stress relaxation in prestressing tendons at variable strain, as well as the effects of humidity and temperature variations. The paper must be intended as a homage to the memory of CEB (Comité Euro-International du Béton, Euro-International Committee for Concrete) Honorary Member and member of the Academy of Construction and Architecture of the USSR Alexei A. Gvozdev, for long-time head of the laboratory of reinforced concrete of NIIZHB, the Institute for Concrete and Reinforced Concrete now named after him, for his crucial role in encouraging and assisting the author in the initial steps of transporting into CEB and FIP (Fédération Internationale de la Précontrainte, International Federation for Prestressing) ambient the fundaments of this new advanced format for creep analysis, to which the school of Soviet scientists and Gvozdev himself had given a fundamental contribution. The present edition of the paper incorporates some significant updates related to the advancement in the international debate, with respect to the previous edition published in the Journal “Industrial and Civil Engineering” (Promyshlennoe i grazhdanskoe stroitel’stvo) of December 2014.


2018 ◽  
Vol 38 ◽  
pp. 03035
Author(s):  
Ji Zhong Wang ◽  
Lu Cheng ◽  
Xin Pei Wang

A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.


Author(s):  
Jiří Koktan ◽  
Jiří Brožovský

Abstract The paper proposes an implementation of creep analysis of reinforced concrete structures which utilizes the B3 model and the direct stiffness method for reinforced concrete frames. The analysis is based on a numerical integration and it is implemented in an algorithmic programming language. There is presented a solution with the mentioned approaches which is compared with solution based on the EN 1992-1-1 technical standard.


2021 ◽  
pp. 83-109
Author(s):  
Yue Geng ◽  
Gianluca Ranzi ◽  
Yu-yin Wang ◽  
Raymond Ian Gilbert ◽  
Sumei Zhang

<p>This chapter presents a state-of-the-art review of the time-dependent behaviour of composite columns. The first part of the chapter outlines the available typologies and advantages of composite columns. This is followed by an overview of the time-dependent response of concrete (specific to composite columns) and an introduction to concrete confinement. The main part of the chapter is devoted to the state-of-the-art review on how concrete time effects influence the long-term and ultimate behaviour of concrete-filled steel tube (CFST) columns, and on the combined effects produced by sustained loading and chloride corrosion on CFST columns. The review then deals with the long-term behaviour of concrete-filled double skin tube (CFDST) and encased composite columns. The final parts of the chapter provide a review of the time-dependent differential axial shortening (DAS) in vertical components of multi-storey buildings and on the long-term response of arch bridges.</p>


Sign in / Sign up

Export Citation Format

Share Document