Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte

2021 ◽  
Vol 34 ◽  
pp. 12-21
Author(s):  
Chuanliang Wei ◽  
Liwen Tan ◽  
Yuan Tao ◽  
Yongling An ◽  
Yuan Tian ◽  
...  
Author(s):  
Liying Tian ◽  
Ying Liu ◽  
Zhe Su ◽  
Yu Cao ◽  
Wanyu Zhang ◽  
...  

Solid polymer electrolytes (SPEs) with good flexibility and low cost are very promising for all-solid-state lithium metal batteries, but they suffer from the trad-off between ionic conductivity at room temperature...


2018 ◽  
Vol 122 (46) ◽  
pp. 26393-26400 ◽  
Author(s):  
Zachary J. Farrell ◽  
Nina Reger ◽  
Ian Anderson ◽  
Ellen Gawalt ◽  
Christopher Tabor

2021 ◽  
pp. 103062
Author(s):  
Honghao Liu ◽  
Weixin Zhang ◽  
Ji Tu ◽  
Qigao Han ◽  
Yaqing Guo ◽  
...  

2020 ◽  
Vol 3 (11) ◽  
pp. 11024-11035
Author(s):  
Hoai Khang Tran ◽  
Yi-Shiuan Wu ◽  
Wen-Chen Chien ◽  
She-huang Wu ◽  
Rajan Jose ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2639 ◽  
Author(s):  
James P. Wissman ◽  
Kaushik Sampath ◽  
Simon E. Freeman ◽  
Charles A. Rohde

Submersible robotics have improved in efficiency and versatility by incorporating features found in aquatic life, ranging from thunniform kinematics to shark skin textures. To fully realize these benefits, sensor systems must be incorporated to aid in object detection and navigation through complex flows. Again, inspiration can be taken from biology, drawing on the lateral line sensor systems and neuromast structures found on fish. To maintain a truly soft-bodied robot, a man-made flow sensor must be developed that is entirely complaint, introducing no rigidity to the artificial “skin.” We present a capacitive cupula inspired by superficial neuromasts. Fabricated via lost wax methods and vacuum injection, our 5 mm tall device exhibits a sensitivity of 0.5 pF/mm (capacitance versus tip deflection) and consists of room temperature liquid metal plates embedded in a soft silicone body. In contrast to existing capacitive examples, our sensor incorporates the transducers into the cupula itself rather than at its base. We present a kinematic theory and energy-based approach to approximate capacitance versus flow, resulting in equations that are verified with a combination of experiments and COMSOL simulations.


Sign in / Sign up

Export Citation Format

Share Document