Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes

2006 ◽  
Vol 56 (1) ◽  
pp. 87-94 ◽  
Author(s):  
André Dias de Azevedo Neto ◽  
José Tarquinio Prisco ◽  
Joaquim Enéas-Filho ◽  
Carlos Eduardo Braga de Abreu ◽  
Enéas Gomes-Filho
2015 ◽  
Vol 43 (2) ◽  
pp. 191-196
Author(s):  
Ensieh Ashrafi ◽  
Morteza Zahedi ◽  
Jamshid Razmjoo

The effect of salt stress on enzyme activities of nine alfalfa cultivars at germination and seedling stage was studied. The activities of SOD, GR, POX and APOX were higher in salt tolerant and lower in salt sensitive cultivars. Results of the effect of salt stress on the SOD, GR, POX, APOX activities and MDA content may be used to select salt tolerance cultivars at the germination and seedling stages. SOD, GR, POX, APOX and MDA may play an important role in salt tolerant mechanisms in alfalfa. DOI: http://dx.doi.org/10.3329/bjb.v43i2.21672 Bangladesh J. Bot. 43(2): 191-196, 2014 (September)


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2004 ◽  
Vol 16 (1) ◽  
pp. 31-38 ◽  
Author(s):  
André Dias de Azevedo Neto ◽  
José Tarquinio Prisco ◽  
Joaquim Enéas-Filho ◽  
Claudivan Feitosa de Lacerda ◽  
José Vieira Silva ◽  
...  

Seeds from eight different maize genotypes (BR3123, BR5004, BR5011, BR5026, BR5033, CMS50, D766 and ICI8447) were sown in vermiculite, and after germination they were transplanted into nutrient solution or nutrient solution containing 100 mmol.L-1 of NaCl and placed in a greenhouse. During the experimental period plant growth (dry matter, shoot to root dry mass ratio, leaf area, relative growth rate, and net assimilation rate), leaf temperature, stomatal conductance, transpiration, predawn water potential, sodium, potassium, soluble amino acids and soluble carbohydrate contents were determined in both control and salt stressed plants of all genotypes studied. Salt stress reduced plant growth of all genotypes but the genotypes BR5033 and BR5011 were characterized as the most salt-tolerant and salt-sensitive, respectively. Stomatal response of the salt-tolerant genotype was not affected by salinity. Among the studied parameters, shoot to root dry mass ratio, leaf sodium content and leaf soluble organic solute content showed no relation with salt tolerance, i.e., they could not be considered as good morpho-physiological markers for maize salt tolerance. In contrast, sodium and soluble organic solutes accumulation in the roots as a result of salt stress appeared to play an important role in the acclimation to salt stress of the maize genotypes studied, suggesting that they could be used as physiological markers during the screening for salt tolerance.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K + /Na + ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na + transport from the roots to the leaves, increasing K + absorption in the roots and reducing K + secretion from the leaves to maintain a significantly greater K + /Na + ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


Sign in / Sign up

Export Citation Format

Share Document