Adverse health effects of outdoor air pollutants

2006 ◽  
Vol 32 (6) ◽  
pp. 815-830 ◽  
Author(s):  
Luke Curtis ◽  
William Rea ◽  
Patricia Smith-Willis ◽  
Ervin Fenyves ◽  
Yaqin Pan
2014 ◽  
Vol 307 (4) ◽  
pp. H467-H476 ◽  
Author(s):  
Stephen A. Farmer ◽  
Timothy D. Nelin ◽  
Michael J. Falvo ◽  
Loren E. Wold

Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.


Author(s):  
Maria-Viola Martikainen ◽  
Päivi Aakko-Saksa ◽  
Lenie van den Broek ◽  
Flemming R. Cassee ◽  
Roxana O. Carare ◽  
...  

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer’s disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.


2016 ◽  
Vol 18 (6) ◽  
pp. 713-724 ◽  
Author(s):  
Blake Hanson ◽  
Yanjiao Zhou ◽  
Eddy J. Bautista ◽  
Bruce Urch ◽  
Mary Speck ◽  
...  

Environmental microbes have been associated with both protective and adverse health effects in children and adults.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e044833
Author(s):  
Gabriel Silver ◽  
Yordanka Krastev ◽  
Miriam K Forbes ◽  
Brenton Hamdorf ◽  
Barry Lewis ◽  
...  

IntroductionPerfluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of compounds that have been used in hundreds of industrial applications and consumer products including aqueous film-forming foam (AFFF) for many years. Multiple national and international health and environmental agencies have accepted that PFAS exposures are associated with numerous adverse health effects. Australian firefighters have been shown to have elevated levels of PFAS in their blood, specifically perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), due to the historical use of AFFF. While PFAS concentrations decline over time once the source of exposure has been removed, their potential adverse health effects are such that it would be prudent to develop an intervention to lower levels at a faster rate than occurs via natural elimination rates.Methods and analysisThis is a randomised controlled trial of current and former Australian firefighters in the Metropolitan Fire Brigade/Fire Rescue Victoria, and contractors, with previous occupational exposure to PFAS and baseline elevated PFOS levels. The study is investigating whether whole blood donation every 12 weeks or plasma donation every 6 weeks will significantly reduce PFAS levels, compared with a control group. We have used covariate-adaptive randomisation to balance participants’ sex and blood PFAS levels between the three groups and would consider a 25% reduction in serum PFOS and PFHxS levels to be potentially clinically significant after 12 months of whole blood or plasma donation. A secondary analysis of health biomarkers is being made of changes between screening and week 52 in all three groups.Ethics and disseminationThis trial has been approved by Macquarie University Human Research Ethics Committee (reference number: 3855), final protocol V.2 dated 12 June 2019. Study results will be disseminated via peer-reviewed publications and presentations at conferences.Trial registration numberAustralian New Zealand Clinical Trials Registry (ACTRN12619000204145).


Sign in / Sign up

Export Citation Format

Share Document