Drugs of abuse and their metabolites in the Ebro River basin: Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation

2010 ◽  
Vol 36 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Cristina Postigo ◽  
María José López de Alda ◽  
Damià Barceló
2009 ◽  
Vol 59 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Gopal Chandra Ghosh ◽  
Takashi Okuda ◽  
Naoyuki Yamashita ◽  
Hiroaki Tanaka

The occurrence and elimination of seventeen antibiotics (three macrolides: azithromycin, clarithromycin and roxithromycin; five quinolones: ciprofloxacin, enrofloxacin, levofloxacin, nalidixic acid and norfloxacin; five sulfonamides: sulfadimethoxine, sulfadimizine, sulfamerazine, sulfamethoxazole and sulfamonomethoxine; and others: tetracycline, lincomycin, salinomycin and trimethoprim) were investigated at four full-scale sewage treatment plants in Japan. The highest concentration was recorded for clarithromycin (1,129 to 4,820 ng/L) in influent, followed by azithromycin (160 to 1,347 ng/L), levofloxacin (255 to 587 ng/L) and norfloxacin (155 to 486 ng/L). A vary inconsistence picture was obtained with negative to over 90% removal. Nalidixic acid (53 to100%) exhibited higher removal efficiency followed by norfloxacin (75 to 95%), levofloxacin (40 to 90%), ciprofloxacin (60 to 83%) and enrofloxacin (38 to 74%). Among macrolides, clarithromycin (50 to 88%) and azithromycin (34 to 86%) showed relatively higher removal efficiency than roxithromycin (−32 to 59%). For most of the antibiotics removal efficiency was higher in A2O and AO based secondary treatment process than CAS process. The effect of the antibiotics on bacterial ammonia oxidation determined by oxygen uptake rate presented that there was no significant effect below 0.05 mg/L of each antibiotics. Even at the same concentration, antibiotics in mixed condition had higher inhibition effects than individuals.


2007 ◽  
Vol 56 (12) ◽  
pp. 133-140 ◽  
Author(s):  
N. Nakada ◽  
K. Komori ◽  
Y. Suzuki ◽  
C. Konishi ◽  
I. Houwa ◽  
...  

The occurrence of 70 pharmaceutical and personal care products (PPCPs) was investigated in the Tone River. The river has the largest basin in Japan, and the water is utilized not only for farming, but also as a source of water supply. One day in both January and October 2006, surface waters in the river and its tributaries and effluents from sewage treatment plants (STPs) directly discharging into the Tone River were collected, the location of which ranged over 150 km along the river. The 70 PPCPs in the samples were concentrated by solid phase cartridge and were measured by LC-MS/MS using three analytical methods. Fifty-seven PPCPs were detected in one or more samples. Bezafibrate, caffeine, carbamazepine, clarithromycin, crotamiton and sulpiride were frequently detected. Mass flow profiles of some PPCPs (e.g., crotamiton) were comparable to cumulative inhabitants in the basin, suggesting that these PPCPs could be markers of population. Total load of each PPCP into the basin from upstream, the tributaries, and the STPs were calculated. The contribution of selected PPCPs from the tributaries with lower sewerage system coverage was dominant compared to those from upstream and the STPs, suggesting the installation of sewerage systems is necessary to reduce the load of PPCPs in the Tone River basin.


Author(s):  
Angelo R. F. Pipi ◽  
Aroldo G. Magdalena ◽  
Giselda P. Giafferis ◽  
Gustavo H. R. da Silva ◽  
Marina Piacenti-Silva

2019 ◽  
Vol 5 ◽  
pp. 272-278 ◽  
Author(s):  
Dilanka N.D. Samaraweera ◽  
Xin Liu ◽  
Guangcai Zhong ◽  
Tilak Priyadarshana ◽  
Riffat Naseem Malik ◽  
...  

Author(s):  
Junwon Park ◽  
Changsoo Kim ◽  
Youngmin Hong ◽  
Wonseok Lee ◽  
Hyenmi Chung ◽  
...  

In this study, we analyzed 27 pharmaceuticals in liquid and solid phase samples collected from the unit processes of four different sewage treatment plants (STPs) to evaluate their distribution and behavior of the pharmaceuticals. The examination of the relative distributions of various categories of pharmaceuticals in the influent showed that non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant. While the relative distribution of antibiotics in the influent was not high (i.e., 3%–5%), it increased to 14%–30% in the effluent. In the four STPs, the mass load of the target pharmaceuticals was reduced by 88%–95% mainly in the biological treatment process, whereas the ratio of pharmaceuticals in waste sludge to those in the influent (w/w) was only 2%. In all the STPs, the removal efficiencies for the stimulant caffeine, NSAIDs (acetaminophen, naproxen, and acetylsalicylic acid), and the antibiotic cefradine were high; they were removed mainly by biological processes. Certain compounds, such as the NSAID ketoprofen, contrast agent iopromide, lipid regulator gemfibrozil, and antibiotic sulfamethoxazole, showed varying removal efficiencies depending on the contribution of biodegradation and sludge sorption. In addition, a quantitative meta-analysis was performed to compare the pharmaceutical removal efficiencies of the biological treatment processes in the four STPs, which were a membrane bioreactor (MBR) process, sequencing batch reactor (SBR) process, anaerobic–anoxic–oxic (A2O) process, and moving-bed biofilm reactor (MBBR) process. Among the biological processes, the removal efficiency was in the order of MBR > SBR > A2O > MBBR. Among the tertiary treatment processes investigated, powdered activated carbon showed the highest removal efficiency of 18%–63% for gemfibrozil, ibuprofen, ketoprofen, atenolol, cimetidine, and trimethoprim.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2988
Author(s):  
Sola Choi ◽  
Miyeon Kwon ◽  
Myung-Ja Park ◽  
Juhea Kim

Microplastics reach the aquatic environment through wastewater. Larger debris is removed in sewage treatment plants, but filters are not explicitly designed to retain sewage sludge’s microplastic or terrestrial soils. Therefore, the effective quantification of filtration system to mitigate microplastics is needed. To mitigate microplastics, various devices have been designed, and the removal efficiency of devices was compared. However, this study focused on identifying different fabrics that shed fewer microplastics. Therefore, in this study, fabric-specific analyses of microplastics of three different fabrics during washing and drying processes were studied. Also, the change in the generation of microplastics for each washing process of standard washing was investigated. The amount of microplastics released according to the washing process was analyzed, and the collected microplastics’ weight, length, and diameter were measured and recorded. According to the different types of yarn, the amount of microplastic fibers produced during washing and drying varied. As the washing processes proceed, the amount of microplastics gradually decreased. The minimum length (>40 µm) of micro-plastics generated were in plain-woven fabric. These results will be helpful to mitigate microplastics in the production of textiles and in selecting built-in filters, and focusing on the strict control of other parameters will be useful for the development of textile-based filters, such as washing bags.


2016 ◽  
Vol 132 ◽  
pp. 132-139 ◽  
Author(s):  
Ming-Hong Wu ◽  
Chen-Jing Que ◽  
Gang Xu ◽  
Yan-Feng Sun ◽  
Jing Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document