scholarly journals Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates

2009 ◽  
Vol 157 (1) ◽  
pp. 313-319 ◽  
Author(s):  
Carly J. Stevens ◽  
Nancy B. Dise ◽  
David J. Gowing
2022 ◽  
Author(s):  
Qiongyu Zhang ◽  
Jianxing Zhu ◽  
Qiufeng Wang ◽  
Li Xu ◽  
Mingxu Li ◽  
...  

2012 ◽  
Vol 42 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Juan A. Blanco ◽  
Xiaohua Wei ◽  
Hong Jiang ◽  
Cheng-Yue Jie ◽  
Zan-Hong Xin

Atmospheric pollution levels in China are increasing quickly. Experience from other polluted regions shows that tree growth could be affected, but long-term effects of N deposition and soil acidification on Chinese forests remain mostly unknown. Soil acidification and N deposition were simulated for Chinese fir ( Cunninghamia lanceolata (Lamb.) Hook.) plantations managed for three consecutive 20-year rotations in southeastern China. A factorial experiment combined four rain pH levels (2.5, 4.0, 5.6, and 7.0), four N deposition rates (1, 7.5, 15, and 30 kg N·ha–1·year–1), and two site qualities (poor and rich). Results indicate that atmospheric pollution effects are not immediate, but after one to two rotations, soil acidification effects could reduce ecosystem C pools significantly (–25% and –11% in poor and rich sites, respectively). N deposition rates above 15 kg N·ha–1·year–1 could offset some of the negative effects of soil acidification and lead to more ecosystem C (19 and 28 Mg C·ha–1 more in poor and rich sites, respectively, than in low N deposition). However, at high N deposition rates (>15 kg N·ha–1·year–1), N leaching losses could greatly increase, reaching 75 kg N·ha–1·year–1. Moderate N deposition could increase tree biomass production and soil organic mass, resulting in increased ecosystem C, but these gains could be associated with important N leaching. Atmospheric pollution could also result in the long term in nutrient imbalances and additional ecological issues (i.e., biodiversity loss, eutrophication, etc.) not studied here.


1996 ◽  
Vol 11 (1-2) ◽  
pp. 139-143 ◽  
Author(s):  
S. Mannings ◽  
S. Smith ◽  
J.N.B. Bell

Pedosphere ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Ke-Hui LIU ◽  
Yun-Ting FANG ◽  
Fang-Ming YU ◽  
Qiang LIU ◽  
Fu-Rong LI ◽  
...  

1998 ◽  
Vol 2 (4) ◽  
pp. 473-483 ◽  
Author(s):  
J. P. Mol-Dijkstra ◽  
H. Kros ◽  
C. van der Salm

Abstract. Great effort has been dedicated to developing soil acidification models for use on different scales. This paper focuses on the changes in model performance of a site scale soil acidification model (NUCSAM) and a national to European scale soil acidification model (SMART 2). This was done to gain insight into the effects of model simplification. Because these models aim to predict the response to reduction in acid deposition, these models must be tested under such circumstances. A straightforward calibration and validation of the regional model, however, is hampered by lack of observations over a sufficient time period. Consequently, NUCSAM was calibrated and validated to a manipulation experiment involving reduced acid deposition in the Speuld forest, the Netherlands. SMART 2 was then used with calibrated input data from NUCSAM. The acid deposition was excluded by a roof beneath the canopy. The roofed area consists of a plot receiving pristine deposition levels of nitrogen (N) and sulphur (S) and a control plot receiving ambient deposition. NUCSAM was calibrated on the ambient plot, followed by a validation of both models on the pristine plot. Both models predicted soil solution concentrations within the 95% confidence interval of the observed responses for both the ambient plot and the pristine plot at 90 cm depth. Despite the large seasonal and vertical (spatial) variation in soil solution chemistry, the trends in annual flux- weighted soil solution chemistry, as predicted by SMART 2 and NUCSAM, corresponded well.The annual leaching fluxes below the root zone were also similar although differences exist for the topsoil. For the topsoil, NUCSAM simulated the nutrients and acid related constituents better than SMART 2. Both models overestimated the ammonium (NH4) concentration at 10 cm depth. SMART 2 underestimated calcium and magnesium (BC2+) concentration at 10 depth, whereas NUCSAM overestimated BC2+ concentration at 90 cm depth. NUCSAM predicted the effect of deposition reduction on N concentrations at both depths, whereas SMART 2 underestimated the effect of deposition reduction at 10 cm depth. Both models predicted faster effects of deposition reduction on aluminum (Al), sulphate (SO4) and base cations than was observed. Generally, it appeared that the differences were large during the period of profound deposition changes whereas small differences occurred during slight variations in deposition level. It is concluded that a simpler model description does not affect the model's performance significantly as regards flux-weighted annual average concentrations at greater depth. Model improvements must focus on processes related to N-dynamics.


2012 ◽  
Vol 163 (9) ◽  
pp. 374-382 ◽  
Author(s):  
Sabine Braun ◽  
Walter Flückiger

Soil acidification in permanent observation plots Soil acidification is followed in Swiss forest observation plots differing in soil chemistry. Soil solution samples from suction cups show clearly increasing soil acidification between 1998 and 2011, although the rate has declined in many cases during the last five years. The most rapid decline is currently observed in plots with medium to high base saturation. Nitrogen addition experiments and time series after thinning out forests confirm the important role of nitrogen input and nitrate leaching for the acidification process. It is suggested that the slowdown of acidification since 2003 has several reasons: reaching of the aluminium buffer range in the very acidic plots, decreased nitrate leaching in a series of dry years, reduction of acid deposition.


Sign in / Sign up

Export Citation Format

Share Document