scholarly journals Impacts of enhanced nitrogen deposition and soil acidification on biomass production and nitrogen leaching in Chinese fir plantations

2012 ◽  
Vol 42 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Juan A. Blanco ◽  
Xiaohua Wei ◽  
Hong Jiang ◽  
Cheng-Yue Jie ◽  
Zan-Hong Xin

Atmospheric pollution levels in China are increasing quickly. Experience from other polluted regions shows that tree growth could be affected, but long-term effects of N deposition and soil acidification on Chinese forests remain mostly unknown. Soil acidification and N deposition were simulated for Chinese fir ( Cunninghamia lanceolata (Lamb.) Hook.) plantations managed for three consecutive 20-year rotations in southeastern China. A factorial experiment combined four rain pH levels (2.5, 4.0, 5.6, and 7.0), four N deposition rates (1, 7.5, 15, and 30 kg N·ha–1·year–1), and two site qualities (poor and rich). Results indicate that atmospheric pollution effects are not immediate, but after one to two rotations, soil acidification effects could reduce ecosystem C pools significantly (–25% and –11% in poor and rich sites, respectively). N deposition rates above 15 kg N·ha–1·year–1 could offset some of the negative effects of soil acidification and lead to more ecosystem C (19 and 28 Mg C·ha–1 more in poor and rich sites, respectively, than in low N deposition). However, at high N deposition rates (>15 kg N·ha–1·year–1), N leaching losses could greatly increase, reaching 75 kg N·ha–1·year–1. Moderate N deposition could increase tree biomass production and soil organic mass, resulting in increased ecosystem C, but these gains could be associated with important N leaching. Atmospheric pollution could also result in the long term in nutrient imbalances and additional ecological issues (i.e., biodiversity loss, eutrophication, etc.) not studied here.

2015 ◽  
Vol 12 (1) ◽  
pp. 79-101 ◽  
Author(s):  
Y. Wu ◽  
C. Blodau ◽  
T. R. Moore ◽  
J. Bubier ◽  
S. Juutinen ◽  
...  

Abstract. Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub–Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m−2 yr−1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.


2016 ◽  
Vol 13 (3) ◽  
pp. 707-722 ◽  
Author(s):  
K. Zając ◽  
C. Blodau

Abstract. Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH4 15NO3) at a rate of 2.3 g N m−2 yr−1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m−2 yr−1) up to 12.2 mg g−1 (Frölichshaier Sattelmoor, 4.7–6.0 g N m−2 yr−1). In peat from Degerö, nitrate and ammonium concentrations were below 3 mg L−1, whereas up to 30 (nitrate) and 11 mg L−1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2–0.35 mg g−1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids, and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m−2 yr−1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.


2017 ◽  
Vol 8 (4) ◽  
pp. 1121-1139 ◽  
Author(s):  
Maarten C. Braakhekke ◽  
Karin T. Rebel ◽  
Stefan C. Dekker ◽  
Benjamin Smith ◽  
Arthur H. W. Beusen ◽  
...  

Abstract. To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901–2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88 % by 1997–2006 relative to pre-industrial conditions. Climate change led globally to a 31 % increase in N leaching, but the size and direction of change varied among global regions: leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33 % globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73 % with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 Tg N yr−1 in 1901–1911 to 18.5 Tg N yr−1 in 1997–2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation.


2009 ◽  
Vol 40 (2-3) ◽  
pp. 198-216 ◽  
Author(s):  
Anne Merete S. Sjøeng ◽  
Richard F. Wright ◽  
Øyvind Kaste

MAGIC (the Model of Acidification of Groundwater In Catchments) has been widely applied on catchments all over the world. The model has been used with annual time resolution to simulate the long-term effects of acidic deposition on surface water chemistry. Here MAGIC was applied using a monthly time step. The purpose was to simulate observed seasonal nitrate (NO3) concentrations and fluxes at an upland heathland catchment in southwestern Norway during the period 1993–2004. The rates of the key ecosystem nitrogen (N) processes (mineralization, plant uptake, litterfall and immobilization) were assumed to be governed by temperature. A snow accumulation and melt routine was used. The rates were calibrated to obtain the best match between the observed and simulated NO3 patterns. The best fit was obtained with standard yearly cycles for deposition and N parameters. The results show that MAGIC can explain 68 and 88% of the variation in seasonal NO3 concentrations and fluxes, respectively. The calibrated model provides a tool for exploring the effects of future scenarios of climate change and N deposition on NO3 in streamwater.


New Forests ◽  
2020 ◽  
Author(s):  
Yuanfa Li ◽  
Ji’an He ◽  
Lihua Lu ◽  
Junmo Xu ◽  
Hongxiang Wang ◽  
...  

2013 ◽  
Vol 33 (13) ◽  
pp. 4205-4213
Author(s):  
胡振宏 HU Zhenhong ◽  
何宗明 HE Zongming ◽  
范少辉 FAN Shaohui ◽  
黄志群 HUANG Zhiqun ◽  
万晓华 WAN Xiaohua ◽  
...  

2007 ◽  
Vol 4 (5) ◽  
pp. 3055-3085 ◽  
Author(s):  
H. A. de Wit ◽  
A. Hindar ◽  
L. Hole

Abstract. Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1798
Author(s):  
Piaopiao Ke ◽  
Gaoyue Si ◽  
Yao Luo ◽  
Zhenglin Cheng ◽  
Qian Yu ◽  
...  

Anthropogenic emissions of nitrogen- (N) and sulfur (S)-containing pollutants have declined across China in recent years. However, the responses of N and S depositions and dynamics in soil remain unclear in subtropical forests. In this study, the wet and throughfall depositions of dissolved inorganic N (DIN) and SO42− were continuously monitored in a mildly polluted subtropical forest in Southeast China in 2017 and 2018. Moreover, these solutes in soil water along the soil profile were monitored in 2018. Throughfall deposition of DIN and S decreased by 59% and 53% in recent 3 years, respectively, which can be majorly attributed to the decreases in wet depositions of NO3− and SO42−. Meanwhile, NH4+ deposition remained relatively stable at this site. Even though N deposition in 2018 was below the N saturation threshold for subtropical forests, significant N leaching still occurred. Excess export of N occurred in the upper soil layer (0–15 cm), reaching 6.86 ± 1.54 kg N/ha/yr, while the deeper soil (15–30 cm) was net sink of N as 8.29 ± 1.71 kg N/ha/yr. Similarly, S was excessively exported from the upper soil with net flux of 14.7 ± 3.15 kg S/ha/yr, while up to 6.37 ± 3.18 kg S/ha/yr of S was retained in the deeper soil. The significant N and S leaching under declined depositions suggested that this site possibly underwent a transition state, recovering from historically high acid deposition. Furthermore, the rainfall intensity remarkably regulated leaching and retention of SO42− and DIN at this site. The impacts of climate changes on N and S dynamics require further long-term monitoring in subtropical forests.


2008 ◽  
Vol 12 (2) ◽  
pp. 393-403 ◽  
Author(s):  
H. A. de Wit ◽  
A. Hindar ◽  
L. Hole

Abstract. Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.


Sign in / Sign up

Export Citation Format

Share Document