Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France

2009 ◽  
Vol 157 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Nathalie Sauret ◽  
Henri Wortham ◽  
Rafal Strekowski ◽  
Pierre Herckès ◽  
Laura Ines Nieto
2006 ◽  
Vol 6 (2) ◽  
pp. 447-469 ◽  
Author(s):  
I. Trebs ◽  
L. L. Lara ◽  
L. M. M. Zeri ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total (wet + dry) N deposition has been extensively determined in temperate regions, only very few data sets of N wet deposition exist for tropical ecosystems, and moreover, reliable experimental information about N dry deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on in-situ measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002) and were a part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign. Ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), aerosol ammonium (NH4+) and aerosol nitrate (NO3-) were measured in real-time, accompanied by simultaneous meteorological measurements. Dry deposition fluxes of NO2 and HNO3 are inferred using the ''big leaf multiple resistance approach'' and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH3 and HONO are estimated by applying a ''canopy compensation point model''. N dry and wet deposition is dominated by NH3 and NH4+, which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH3 emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH3 emissions from cattle excreta. NO2 also significantly accounted for N dry deposition, whereas HNO3, HONO and N-containing aerosol species were only minor contributors. Ignoring NH3 emission from the vegetation surface, the annual net N deposition rate is estimated to be about −11 kgN ha-1 yr-1. If on the other hand, surface-atmosphere exchange of NH3 is considered to be bi-directional, the annual net N budget at the pasture site is estimated to range from −2.15 to −4.25 kgN ha-1 yr-1.


2017 ◽  
Vol 122 (2) ◽  
pp. 1338-1364 ◽  
Author(s):  
B. Marticorena ◽  
B. Chatenet ◽  
J. L. Rajot ◽  
G. Bergametti ◽  
A. Deroubaix ◽  
...  

Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 86 ◽  
Author(s):  
Sonia Castillo ◽  
Andrés Alastuey ◽  
Emilio Cuevas ◽  
Xavier Querol ◽  
Anna Avila

1993 ◽  
Vol 27 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Carlos M. Rojas ◽  
Jasna Injuk ◽  
RenéE. Van Grieken ◽  
Remi W. Laane

2005 ◽  
Vol 5 (3) ◽  
pp. 3131-3189 ◽  
Author(s):  
I. Trebs ◽  
L. L. Lara ◽  
L. M. M. Zeri ◽  
L. V. Gatti ◽  
P. Artaxo ◽  
...  

Abstract. The input of nitrogen (N) to ecosystems has increased dramatically over the past decades. While total N deposition (wet + dry) has been extensively determined in temperate regions, only very few data sets exist about wet N deposition in tropical ecosystems, and moreover, experimental information about dry N deposition in tropical environments is lacking. In this study we estimate dry and wet deposition of inorganic N for a remote pasture site in the Amazon Basin based on in-situ measurements. The measurements covered the late dry (biomass burning) season, a transition period and the onset of the wet season (clean conditions) (12 September to 14 November 2002, LBA-SMOCC). Ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), nitrogen dioxide (NO2), nitric oxide (NO), ozone (O3), aerosol ammonium (NH4+) and aerosol nitrate (NO3-) were measured in real-time, accompanied by simultaneous (micro-)meteorological measurements. Dry deposition fluxes of NO2 and HNO3 are inferred using the ''big leaf multiple resistance approach'' and particle deposition fluxes are derived using an established empirical parameterization. Bi-directional surface-atmosphere exchange fluxes of NH3 and HONO are estimated by applying a ''canopy compensation point model''. Dry and wet N deposition is dominated by NH3 and NH4+, which is largely the consequence of biomass burning during the dry season. The grass surface appeared to have a strong potential for daytime NH3 (re-)emission, owing to high canopy compensation points, which are related to high surface temperatures and to direct NH3 emissions from cattle excreta. NO2 also significantly accounted for dry N deposition, whereas HNO3, HONO and N-containing aerosol species were only minor contributors. We estimated a total (dry + wet) N deposition of 7.3–9.8 kgN ha-1 yr-1 to the tropical pasture site, whereof 2–4.5 kgN ha-1 yr-1 are attributed to dry N deposition and ~5.3 kgN ha-1 yr-1 to wet N deposition. Our estimate exceeds total (wet + dry) N deposition to tropical ecosystems predicted by global chemistry and transport models by at least factor of two.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199241 ◽  
Author(s):  
Yanan Wu ◽  
Jiakai Liu ◽  
Jiexiu Zhai ◽  
Ling Cong ◽  
Yu Wang ◽  
...  

2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document