High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems

2016 ◽  
Vol 213 ◽  
pp. 119-126 ◽  
Author(s):  
Like Xu ◽  
Weiying Ouyang ◽  
Yanyun Qian ◽  
Chao Su ◽  
Jianqiang Su ◽  
...  
2019 ◽  
Vol 366 (6) ◽  
Author(s):  
Ruidong Mi ◽  
Rakesh Patidar ◽  
Annemieke Farenhorst ◽  
Zhangbin Cai ◽  
Shadi Sepehri ◽  
...  

ABSTRACTThis study analyzed the microbiological quality of drinking and source water from three First Nations communities in Manitoba, Canada that vary with respect to the source, storage and distribution of drinking water. Community A relies on an aquifer and Community B on a lake as source water to their water treatment plants. Community C does not have a water treatment plant and uses well water. Quantification of free residual chlorine and fecal bacterial (E. coli and coliforms), as well as detection of antibiotic resistance genes (sul, ampC, tet(A), mecA, vanA, blaSHV, blaTEM, blaCTX-M, blaOXA-1, blaCYM-2, blaKPC, blaOXA-48, blaNDM, blaVIM, blaGES and blaIMP) was carried out. While water treatment plants were found to be working properly, as post-treatment water did not contain E. coli or coliforms, once water entered the distribution system, a decline in the chlorine concentration with a concomitant increase in bacterial counts was observed. In particular, water samples from cisterns not only contained high number of E. coli and coliforms, but were also found to contain antibiotic resistance genes. This work shows that proper maintenance of the distribution and storage systems in First Nations communities is essential in order to provide access to clean and safe drinking water.


2019 ◽  
Vol 116 ◽  
pp. 00077
Author(s):  
Agata Siedlecka ◽  
Katarzyna Piekarska

Antibiotic resistance of bacteria is regarded as a global health risk and should be monitored in all environments, including tap water distribution systems. In this study, tap water samples were collected from two water treatment plants and selected points-of-use from the water distribution network. The abundances of antibiotic resistant bacteria were determined via culture-dependent method and the presence of selected antibiotic resistance genes was detected via PCR. The influence of the distance of points-of-use from water treatment plants on bacterial loads and antibiotic resistance phenomenon was evaluated. The paper presents preliminary results of a large-scale study concerning spatial and seasonal variation in antibiotic resistance of bacteria dwelling in the tap water system in Wrocław.


2009 ◽  
Vol 75 (17) ◽  
pp. 5714-5718 ◽  
Author(s):  
Chuanwu Xi ◽  
Yongli Zhang ◽  
Carl F. Marrs ◽  
Wen Ye ◽  
Carl Simon ◽  
...  

ABSTRACT The occurrence and spread of antibiotic-resistant bacteria (ARB) are pressing public health problems worldwide, and aquatic ecosystems are a recognized reservoir for ARB. We used culture-dependent methods and quantitative molecular techniques to detect and quantify ARB and antibiotic resistance genes (ARGs) in source waters, drinking water treatment plants, and tap water from several cities in Michigan and Ohio. We found ARGs and heterotrophic ARB in all finished water and tap water tested, although the amounts were small. The quantities of most ARGs were greater in tap water than in finished water and source water. In general, the levels of bacteria were higher in source water than in tap water, and the levels of ARB were higher in tap water than in finished water, indicating that there was regrowth of bacteria in drinking water distribution systems. Elevated resistance to some antibiotics was observed during water treatment and in tap water. Water treatment might increase the antibiotic resistance of surviving bacteria, and water distribution systems may serve as an important reservoir for the spread of antibiotic resistance to opportunistic pathogens.


Sign in / Sign up

Export Citation Format

Share Document