Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain

2020 ◽  
Vol 256 ◽  
pp. 113401 ◽  
Author(s):  
Jiayuan Wang ◽  
Gehui Wang ◽  
Can Wu ◽  
Jianjun Li ◽  
Cong Cao ◽  
...  
2020 ◽  
Author(s):  
Jiayun Li ◽  
Liming Cao ◽  
Wenkang Gao ◽  
Lingyan He ◽  
Yingchao Yan ◽  
...  

Abstract. For the first time in the North China Plain (NCP), we investigated the seasonal variations of submicron particles (NR-PM1) and its chemical composition at a background mountain station using Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). The averaged NR-PM1 were highest in autumn (15.1 μg m−3) and lowest in summer (12.4 μg m−3), with the abundance of more nitrate in spring (34 %), winter (31 %), and autumn (34 %), and elevated organics (40 %) and sulfate (38 %) proportion in summer. The submicron particles were almost neutralized by excess ammonium in all four seasons except summer, when the aerosol particles appeared to be slightly acidic. The size distribution of all PM1 species showed a consistent accumulation mode peaked at approximately 600–800 nm (dva), indicating the highly aged and internally mixed nature of the background aerosols, which further supported by the source appointment using multilinear engine (ME-2) and significant contributions of aged secondary organic aerosol (SOA) in organic aerosol (OA) were resolved in all seasons (> 77 %), especially in summer (95 %). The oxidation degree and evolution process of OAs in the four seasons were further investigated, and enhanced carbon oxidation state (−0.45–0.10), O / C (0.54–0.75) and OM / OC (1.86–2.13) ratios compared with urban studies were observed, with the highest oxidation degree of which appeared in summer, likely due to the relatively stronger photochemical processing which dominated the processes of both less oxidized OA (LO-OOA) and more oxidized OA (MO-OOA) formations. Aqueous-phase processing also contributed to the SOA formation but prevailed in autumn and winter and the role of which to MO-OOA and LO-OOA also varied in different seasons. In addition, compared with the urban atmosphere, LO-OOA formation in the background atmosphere exhibited more regional characteristics, as photochemical and aqueous-phase processing enhanced during the transport in summer and autumn, respectively. Furthermore, the backward trajectories analysis showed that higher submicron particles were associated with air mass for short distance transported from the southern regions in four seasons, while the long-range transport from Inner Mongolia (west and north regions) also contributed to the summer particle pollutions in the background areas of NCP. Our results illustrate the background particles in NCP are influenced significantly by aging processing and transport, and the more neutralized state of submicron particles with the abundance of nitrate compared with those in the background atmosphere in southern and western China, highlighting the regional reductions in emissions of nitrogen oxide and ammonia are critical for remedying the increased occurrence of nitrate-dominated haze event in the NCP.


2012 ◽  
Vol 12 (4) ◽  
pp. 9079-9124
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
J. Li ◽  
Y. L. Sun ◽  
...  

Abstract. Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3) were double those in late June (926 ± 574 ng m−3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%). In contrast, isoprene SOC was the main contributor (6.6%) to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6‰ to −23.2‰, mean −25.0‰) were lower than those (−23.9‰ to −21.9‰, mean −22.9‰) in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic molecular compositions and stable carbon isotopic compositions of aerosol particles in the troposphere over North China Plain.


2010 ◽  
Vol 44 (22) ◽  
pp. 8453-8459 ◽  
Author(s):  
Yoshiteru Iinuma ◽  
Olaf Böge ◽  
Ricarda Gräfe ◽  
Hartmut Herrmann

2020 ◽  
Vol 54 (7) ◽  
pp. 3849-3860 ◽  
Author(s):  
Ye Kuang ◽  
Yao He ◽  
Wanyun Xu ◽  
Bin Yuan ◽  
Gen Zhang ◽  
...  

2017 ◽  
Vol 164 ◽  
pp. 259-269 ◽  
Author(s):  
Simonas Kecorius ◽  
Nan Ma ◽  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Shenglan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document