Proteomics reveals surface electrical property-dependent toxic mechanisms of silver nanoparticles in Chlorella vulgaris

2020 ◽  
Vol 265 ◽  
pp. 114743
Author(s):  
Jilai Zhang ◽  
Lin Shen ◽  
Qianqian Xiang ◽  
Jian Ling ◽  
Chuanhua Zhou ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 283-293
Author(s):  
Milad Torabfam ◽  
Meral Yüce

AbstractGreen synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. This study describes the practical synthesis of silver nanoparticles (AgNPs) through the reduction of silver nitrate solution using an algal source, Chlorella vulgaris, as the reducing as well as the stabilizing agent. The energy required for this synthesis was supplied by microwave radiation. The ultraviolet-visible spectroscopy exhibited a single peak related to the surface plasmon absorbance of AgNPs at 431 nm. The AgNPs with high stability (a zeta potential of −17 mV), hydrodynamic size distribution of 1–50 nm, and mostly spherical shape were obtained through a 10 min process. Fourier transform infrared spectroscopy analysis revealed that several functional groups, including carbonyl groups of C. vulgaris, play a significant role in the formation of functional NPs. Antibacterial features of the produced AgNPs were verified against those of Salmonella enterica subsp. enterica serovar typhimurium and Staphylococcus aureus, demonstrating a considerable growth inhibition at increasing concentrations of the NPs. As a result, the formed AgNPs can be used as a promising agent against bacterial diseases.


2020 ◽  
Author(s):  
Stefania Mariano ◽  
Elisa Panzarini ◽  
Maria Dias Inverno ◽  
Nikolaos Voulvoulis ◽  
Luciana Dini

Abstract BackgroundSilver nanoparticles (AgNPs) are one of the most widely used nanomaterials in consumer products. When discharged into the aquatic environment AgNPs can cause toxicity to aquatic biota, through mechanisms that are still under debate, thus rendering the NPs effects evaluation a necessary step. Different aquatic organism models, i.e. microalgae, mussels, Daphnia magna, sea urchins and Danio rerio, etc. have been largely exploited for NPs toxicity assessment. On the other hand, alternative biological microorganisms abundantly present in nature, i.e. microalgae, are nowadays exploited as a potential sink for removal of toxic substances from the environment. Indeed, the green microalgae Chlorella vulgaris is one of the most used microorganisms for waste treatment.ResultsWith the aim to verify the possible involvement of C. vulgaris not only as a model microorganism of NPs toxicity but also for the protection toward NPs pollution, we used these microalgae to measure the AgNPs biotoxicity and bioaccumulation. In particular, to exclude any toxicity derived by Ag+ ions release, green chemistry synthesised and Glucose coated AgNPs (AgNPs-G) were used. C. vulgaris actively internalised AgNPs-G whose amount increases in a time and dose-dependent manner. The internalised NPs, found inside large vacuoles, were not released back into the medium, even after 1 week, and did not undergo biotransformation since AgNPs-G maintained their crystalline nature. Biotoxicity of AgNPs-G causes an exposure time and AgNPs-G dose-dependent growth reduction and a decrease in chlorophyll-a amount.ConclusionsThese results confirm C. vulgaris as a biomonitoring organism and also suggest it as a bioaccumulating microalgae for possible use in the environment protection.


2011 ◽  
Vol 287-290 ◽  
pp. 1938-1942 ◽  
Author(s):  
Hai Yang Zhang ◽  
Ya Li Kuang ◽  
Zhe Lin ◽  
Chun Hua Liu

Considering the influence on the downstream process of microalgae recovery by cell surface characteristics, in this paper , Microelectrophoresis and Hydrocarbon adsorption have been used for researching the surface electrical property and hydrophobicity of microalgae. The influence on surface characteristics of microalgae cell have been studied by the solution chemistry condition of pH and cationic flocculant. The results show that: The surface charge of microalgae cell is negative under the natural condition. The surface electrical property decreases with the declining pH when pH is less than 7 , but the isoelectric point is not observed until pH low to 1, while it changes little with the pH increased when pH is more than 7; Within the value of experimental pH, microalgae cells have strong hydrophobicity, which increases with the decreasing pH when pH is less than 7 and rises with the pH increased when pH is more than 9. It attains to the minimum value when the pH is about 8. The hydrophobicity of microalgae increases with anhydrous ferric chloride(FeCl3) when cationic flocculant (FeCl3) is added , but the trend became weaker. So the hydrophobicity can be improved by cationic flocculant, which can promote the microalgae cohesion.


2015 ◽  
Vol 45 (1) ◽  
pp. 312-321 ◽  
Author(s):  
Kyongtae Ryu ◽  
Yoon-Jae Moon ◽  
Kyunghoon Park ◽  
Jun-Young Hwang ◽  
Seung-Jae Moon

2015 ◽  
Vol 645-646 ◽  
pp. 157-162 ◽  
Author(s):  
Hui Xie ◽  
Na Na Xiong ◽  
Yu Zhen Zhao ◽  
Yue Hui Wang

Large-scale silver nanoparticles with fine dispersion and narrow size distribution were synthesized by reducing silver nitrate with sodium borohydride and sodium citrate and using poly (vinylpyrrolidone) as an adsorption agent in the ethanol solution. The sintering behavior and electrical properties of silver nanoparticles treated with and without glutaric acid were studied. Morphology studies showed that the treated silver nanoparticles obviously agglomerated and began to sinter at 200 °C and the sintering temperature is higher at least 50 degrees than that of the untreated silver nanoparticles The treated silver nanoparticles as fillers of electronically conductive adhesives (ECAs) is more advantageous to the increase of the conductivity. Otherwise, only in the conditions of the appropriate sintering temperature and loading of silver nanoparticles, the high conductivity of the ECAs was obtained. The effect of the treated silver nanoparticles on the electrical properties contributes to the surface activation and sintering behavior.Keywords: Silver nanoparticle, Sintering Behavior, Surface treatment, Electrical property


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Fatma elmorsi ◽  
wafaa abouelkheir ◽  
Shymaa abdelwahed ◽  
amr helal ◽  
Khaled Farroh

Sign in / Sign up

Export Citation Format

Share Document