scholarly journals Corrigendum to “Dextran stabilized fullerene soot induced toxicity on alveolar epithelial cells (A549 cells)” [Environ. Res. 188 (2020) 109716]

2022 ◽  
Vol 203 ◽  
pp. 111878
Author(s):  
S.S. Athira ◽  
E.T. Biby ◽  
P.V. Mohanan
2013 ◽  
Vol 305 (1) ◽  
pp. L33-L41 ◽  
Author(s):  
Bruce D. Uhal ◽  
Hang Nguyen ◽  
MyTrang Dang ◽  
Indiwari Gopallawa ◽  
Jing Jiang ◽  
...  

Earlier work showed that apoptosis of alveolar epithelial cells (AECs) in response to endogenous or xenobiotic factors is regulated by autocrine generation of angiotensin (ANG) II and its counterregulatory peptide ANG1–7. Mutations in surfactant protein C (SP-C) induce endoplasmic reticulum (ER) stress and apoptosis in AECs and cause lung fibrosis. This study tested the hypothesis that ER stress-induced apoptosis of AECs might also be regulated by the autocrine ANGII/ANG1–7 system of AECs. ER stress was induced in A549 cells or primary cultures of human AECs with the proteasome inhibitor MG132 or the SP-C BRICHOS domain mutant G100S. ER stress activated the ANGII-generating enzyme cathepsin D and simultaneously decreased the ANGII-degrading enzyme ACE-2, which normally generates the antiapoptotic peptide ANG1–7. TAPI-2, an inhibitor of ADAM17/TACE, significantly reduced both the activation of cathepsin D and the loss of ACE-2. Apoptosis of AECs induced by ER stress was measured by assays of mitochondrial function, JNK activation, caspase activation, and nuclear fragmentation. Apoptosis induced by either MG132 or the SP-C BRICHOS mutant G100S was significantly inhibited by the ANG receptor blocker saralasin and was completely abrogated by ANG1–7. Inhibition by ANG1–7 was blocked by the specific mas antagonist A779. These data show that ER stress-induced apoptosis is mediated by the autocrine ANGII/ANG1–7 system in human AECs and demonstrate effective blockade of SP-C mutation-induced apoptosis by ANG1–7. They also suggest that therapeutic strategies aimed at administering ANG1–7 or stimulating ACE-2 may hold potential for the management of ER stress-induced fibrotic lung disorders.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1531-1531
Author(s):  
Suyeon Oh ◽  
Young-Hee Kang

Abstract Objectives Pulmonary fibrosis is a disease in which lung tissues become fibrous and causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract. These macrophages secrete various inflammatory cytokines leading to development of pulmonary fibrosis via epithelial–mesenchymal transition (EMT) process. Aesculetin, a major component of Sancho tree and Chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. Methods Human alveolar basal epithelial A549 cells were cultured in conditioned media of THP-1 monocyte-derived macrophages for 24 h. Aesculetin at the concentrations of 1–20 μM did not show cytotoxicity of A549 cells. Alveolar epithelial cells were incubated with interleukin (IL)-8. Western blotting examined EMT-associated fibrotic proteins from A549 cell lysates. Matrix metalloproteinase (MMP) activity was measured with gelatin zymography. In addition, inflammation- and fibrosis-related cytokines were measured by using ELISA kits. Results The epithelial markers of E-cadherin and ZO-1 were reduced in cells exposed to macrophage-conditioned media containing IL-8 and TNF-α. Macrophage-conditioned media enhanced expression of the mesenchymal fibrotic markers of α-smooth muscle actin (α-SMA), vimentin and fibronectin, and the fibrotic proteins of collagen I and collagen IV were enhanced. However, ≥10 μM aesculetin reciprocally manipulated the expression levels of these proteins of A549 cells. In addition, macrophage-conditioned media enhanced the expression and activity of MT1-MMP, MMP-2 and MMP-9. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 were reduced by exposure of alveolar cells to conditioned media. Proinflammatory and chemotactic IL-8 reduced E-cadherin and conversely enhanced N-cadherin and α-SMA in A549 cells, which was reciprocally modulated by ≥ 10 μM aesculetin. These results demonstrate that aesculetin may ameliorate EMT-associated pulmonary fibrosis caused by contact of blood-derived macrophages and alveolar cells. Conclusions Aesculetin maybe a promising agent treating progressive pulmonary disorders owing to macrophage-mediated inflammation. Funding Sources No funding sources to report.


1997 ◽  
Vol 273 (4) ◽  
pp. L797-L806 ◽  
Author(s):  
Heimo Mairbäurl ◽  
Ralf Wodopia ◽  
Sigrid Eckes ◽  
Susanne Schulz ◽  
Peter Bärtsch

A reduced cation reabsorption across the alveolar epithelium decreases water reabsorption from the alveoli and could diminish clearing accumulated fluid. To test whether hypoxia restricts cation transport in alveolar epithelial cells, cation uptake was measured in rat lung alveolar type II pneumocytes (AII cells) in primary culture and in A549 cells exposed to normoxia and hypoxia. In AII and A549 cells, hypoxia caused a[Formula: see text]-dependent inhibition of the Na-K pump, of Na-K-2Cl cotransport, and of total and amiloride-sensitive22Na uptake. Nifedipine failed to prevent hypoxia-induced transport inhibition in both cell types. In A549 cells, the inhibition of the Na-K pump and Na-K-2Cl cotransport occurred within ∼30 min of hypoxia, was stable >20 h, and was reversed by 2 h of reoxygenation. There was also a reduction in cell membrane-associated Na-K-ATPase and a decrease in Na-K-2Cl cotransport flux after full activation with calyculin A, indicating a decreased transport capacity. [14C]serine incorporation into cell proteins was reduced in hypoxic A549 cells, but inhibition of protein synthesis with cycloheximide did not reduce ion transport. In AII and A549 cells, ATP levels decreased slightly, and ADP and the ATP-to-ADP ratio were unchanged after 4 h of hypoxia. In A549 cells, lactate, intracellular Na, and intracellular K were unchanged. These results indicate that hypoxia inhibits apical Na entry pathways and the basolateral Na-K pump in A549 cells and rat AII pneumocytes in culture, indicating a hypoxia-induced reduction of transepithelial Na transport and water reabsorption by alveolar epithelium. If similar changes occur in vivo, the impaired cation transport across alveolar epithelial cells might contribute to the formation of hypoxic pulmonary edema.


2006 ◽  
Vol 290 (6) ◽  
pp. L1216-L1226 ◽  
Author(s):  
Somshuvra Mukhopadhyay ◽  
Pravin B. Sehgal

Monocrotaline (MCT) causes pulmonary hypertension in the rat by a mechanism characterized by megalocytosis (enlarged cells with enlarged endoplasmic reticulum and Golgi and a cell cycle arrest) of pulmonary arterial endothelial (PAEC), arterial smooth muscle, and type II alveolar epithelial cells. In cell culture, although megalocytosis is associated with a block in entry into mitosis in both lung endothelial and epithelial cells, DNA synthesis is stimulated in endothelial but inhibited in epithelial cells. The molecular mechanism(s) for this dichotomy are unclear. While MCTP-treated PAEC and lung epithelial (A549) cells both showed an increase in the “promitogenic” transcription factor STAT3 levels and in the IL-6-induced nuclear pool of PY-STAT3, this was transcriptionally inactive in A549 but not in PAEC cells. This lack of transcriptional activity of STAT3 in A549 cells correlated with the cytoplasmic sequestration of the STAT3 coactivators CBP/p300 and SRC1/NcoA in A549 cells but not in PAEC. Both cell types displayed a Golgi trafficking block, loss of caveolin-1 rafts, and increased nuclear Ire1α, but an incomplete unfolded protein response (UPR) with little change in levels of UPR-induced chaperones including GRP78/BiP. There were discordant alterations in cell cycle regulatory proteins in the two cell types such as increase in levels of both cyclin D1 and p21 simultaneously, but with a decrease in cdc2/cdk1, a kinase required for entry into mitosis. While both cell types showed increased cytoplasmic geminin, the DNA synthesis-initiating protein Cdt1 was predominantly nuclear in PAEC but remained cytoplasmic in A549 cells, consistent with the stimulation of DNA synthesis in the former but an inhibition in the latter cell type. Thus differences in cell type-specific alterations in subcellular trafficking of critical regulatory molecules (such as CBP/p300, SRC1/NcoA, Cdt1) likely account for the dichotomy of the effects of MCTP on DNA synthesis in endothelial and epithelial cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benedikt Jäger ◽  
Benjamin Seeliger ◽  
Oliver Terwolbeck ◽  
Gregor Warnecke ◽  
Tobias Welte ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive disease harboring significant morbidity and mortality despite recent advances in therapy. Regardless of disease severity acute exacerbations (IPF-AEs) may occur leading to considerable loss of function and are the leading cause of death in IPF. Histologic features of IPF-AE are very similar to acute respiratory distress syndrome (ARDS), but the underlying mechanisms are incompletely understood. We investigated the role of the NLRP3 inflammasome in IPF and IPF-AE. Bronchoalveolar lavage (BAL) cells were sampled from patients with IPF (n = 32), IPF-AE (n = 10), ARDS (n = 7) and healthy volunteers (HV, n = 37) and the NLRP3-inflammasome was stimulated in-vitro. We found the NLRP3 inflammasome to be hyper-inducible in IPF compared to HV with increased IL-1ß and pro-IL-1ß levels on ELISA upon stimulation as well as increased caspase-1 activity measured by caspase-1p20 immunoblotting. In IPF-AE, IL-1ß was massively elevated to an extent similar to ARDS. To evaluate potential mechanisms, we co-cultured BAL cells with radiated A549 cells (a model to simulate apoptotic alveolar epithelial cells), which led to increased NLRP3 mRNA expression and increased caspase-1 dependent IL-1ß production. In the presence of a reactive oxygen species (ROS) inhibitor (diphenyleneiodonium) and a cathepsin B inhibitor (E64D), NLRP3 expression was suppressed indicating that induction of NLRP3 activation following efferocytosis of apoptotic A549 cells is mediated via ROS and cathepsin-B. In summary, we present evidence of involvement of the NLRP3 inflammasome-caspase pathway in the pathogenesis of IPF-AE, similarly to ARDS, which may be mediated by efferocytosis of apoptotic alveolar epithelial cells in IPF.


2021 ◽  
Vol 22 (20) ◽  
pp. 11152
Author(s):  
Kai-Wei Chang ◽  
Xiang Zhang ◽  
Shih-Chao Lin ◽  
Yu-Chao Lin ◽  
Chia-Hsiang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


2002 ◽  
Vol 70 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Luiz E. Bermudez ◽  
Felix J. Sangari ◽  
Peter Kolonoski ◽  
Mary Petrofsky ◽  
Joseph Goodman

ABSTRACT The mechanism(s) by which Mycobacterium tuberculosis crosses the alveolar wall to establish infection in the lung is not well known. In an attempt to better understand the mechanism of translocation and create a model to study the different stages of bacterial crossing through the alveolar wall, we established a two-layer transwell system. M. tuberculosis H37Rv was evaluated regarding the ability to cross and disrupt the membrane. M. tuberculosis invaded A549 type II alveolar cells with an efficiency of 2 to 3% of the initial inoculum, although it was not efficient in invading endothelial cells. However, bacteria that invaded A549 cells were subsequently able to be taken up by endothelial cells with an efficiency of 5 to 6% of the inoculum. When incubated with a bicellular transwell monolayer (epithelial and endothelial cells), M. tuberculosis translocated into the lower chamber with efficiency (3 to 4%). M. tuberculosis was also able to efficiently translocate across the bicellular layer when inside monocytes. Infected monocytes crossed the barrier with greater efficiency when A549 alveolar cells were infected with M. tuberculosis than when A549 cells were not infected. We identified two potential mechanisms by which M. tuberculosis gains access to deeper tissues, by translocating across epithelial cells and by traveling into the blood vessels within monocytes.


1994 ◽  
Vol 267 (3) ◽  
pp. L263-L270 ◽  
Author(s):  
D. Rotin ◽  
B. J. Goldstein ◽  
C. A. Fladd

The role of tyrosine kinases in regulating cell proliferation, differentiation, and development has been well documented. In contrast, little is known about the role of protein tyrosine phosphatases (PTPs) in mammalian development. To identify PTPs that may be involved in lung development, we have isolated (by polymerase chain reaction) from rat fetal alveolar epithelial cells a cDNA fragment which was identified as the recently cloned tyrosine phosphatase LAR-PTP2. Analysis of tissue expression of LAR-PTP2 identified a approximately 7.5-kb message in the lung, which is also expressed weakly in brain, and an alternatively spliced approximately 6.0-kb message (LAR-PTP2B) expressed in brain. In the fetal lung, LAR-PTP2 was preferentially expressed in lung epithelial (but not fibroblast) cells grown briefly in primary culture, and its expression was tightly regulated during lung development, peaking at 20 days of gestational age (term = 22 days), when mature alveolar type II epithelium first appears. Accordingly, immunoblot analysis revealed high expression of endogenous LAR-PTP2 protein in alveolar epithelial cells from 21-day gestation fetuses. LAR-PTP2 was also expressed in lungs of newborn rats, but transcripts (and protein) were barely detectable in adult lungs and in the nonproliferating adult alveolar type II cells. Interestingly, expression was restored in the transformed adult type II-like A549 cells. These results suggest that LAR-PTP2 may play a role in the proliferation and/or differentiation of epithelial cells during lung development.


1996 ◽  
Vol 270 (3) ◽  
pp. L353-L361 ◽  
Author(s):  
R. H. Hastings ◽  
D. Summers-Torres ◽  
T. C. Cheung ◽  
L. S. Ditmer ◽  
E. M. Petrin ◽  
...  

Alveolar epithelial cells in vivo, primary cultures of adult rat type II cells, and human A549 alveolar carcinoma cells express parathyroid hormone-related protein (PTHrP). Here we demonstrated that type II cells and A549 cells also express the PTHrP receptor and that they exhibit differentiation-related responses to the amino-terminal PTHrP fragment, PTHrP-(1-34). PTHrP receptor expression in A549 cells was shown by detection of a 0.3-kb reverse transcriptase polymerase chain reaction product formed by primers specific for PTHrP receptor. In situ hybridization studies localized the site of production of PTHrP and PTHrP receptor mRNA in rat lung cells with morphology and location typical of type II cells. Primary cultures of such type II cells also expressed PTHrP receptor mRNA. Incubation with PTHrP-(1-34) stimulated disaturated phosphatidylcholine (DSPC) synthesis in A549 cells and increased the release of newly synthesized DSPC by cultured type II cells and A549 cells. In addition, PTHrP-(1-34) increased the number of lamellar bodies per type II cell and increased their expression of alkaline phosphatase in a dose-dependent manner. Thus PTHrP-(1-34) promoted a differentiated type II cell phenotype. Since cultured type II cells, alveolar epithelial cells in vivo, and A549 cells express PTHrP and the PTHrP receptor, PTHrP-(1-34) may be an autocrine regulatory factor in type II cells and lung cancer cells.


Sign in / Sign up

Export Citation Format

Share Document