The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time

2021 ◽  
pp. 111941
Author(s):  
Xuemeng Zhang ◽  
Xin Zhang ◽  
Linfeng Li ◽  
Gengxue Fu ◽  
Xiaoying Liu ◽  
...  
Chemosphere ◽  
2019 ◽  
Vol 224 ◽  
pp. 734-742 ◽  
Author(s):  
Xianglong Lin ◽  
Zaijin Sun ◽  
Long Zhao ◽  
Jin Ma ◽  
Xing Li ◽  
...  

2006 ◽  
Vol 25 (3) ◽  
pp. 836 ◽  
Author(s):  
Koen Oorts ◽  
Uldeen Ghesquiere ◽  
Koen Swinnen ◽  
Erik Smolders

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252216
Author(s):  
Laurie Dunn ◽  
Christophe Lang ◽  
Nicolas Marilleau ◽  
Sébastien Terrat ◽  
Luc Biju-Duval ◽  
...  

According to biogeography studies, the abundance and richness of soil microorganisms vary across multiple spatial scales according to soil properties and farming practices. However, soil microorganisms also exhibit poorly understood temporal variations. This study aimed at better understanding how soil microbial communities respond to changes in farming practices at a landscape scale over time. A regular grid of 269 sites was set up across a 1,200 ha farming landscape, and soil samples were characterized for their molecular microbial biomass and bacterial richness at two dates (2011 and 2016). A mapping approach highlighted that spatial microbial patterns were stable over time, while abundance and richness levels were modified. The drivers of these changes were investigated though a PLS-PM (partial least square path-modeling) approach. Soil properties were stable over time, but farming practices changed. Molecular microbial biomass was mainly driven by soil resources, whereas bacterial richness depended on both farming practices and ecological parameters. Previous-crop and management effects and a temporal dependence of the microbial community on the historical farming management were also highlighted.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 479 ◽  
Author(s):  
Hanif ◽  
Guo ◽  
Moniruzzaman ◽  
He ◽  
Yu ◽  
...  

Plant attributes have direct and indirect effects on soil microbes via plant inputs and plant-mediated soil changes. However, whether plant taxonomic and functional diversities can explain the soil microbial diversity of restored forest ecosystems remains elusive. Here, we tested the linkage between plant attributes and soil microbial communities in four restored forests (Acacia species, Eucalyptus species, mixed coniferous species, mixed native species). The trait-based approaches were applied for plant properties and high-throughput Illumina sequencing was applied for fungal and bacterial diversity. The total number of soil microbial operational taxonomic units (OTUs) varied among the four forests. The highest richness of fungal OTUs was found in the Acacia forest. However, bacterial OTUs were highest in the Eucalyptus forest. Species richness was positively and significantly related to fungal and bacterial richness. Plant taxonomic diversity (species richness and species diversity) explained more of the soil microbial diversity than the functional diversity and soil properties. Prediction of fungal richness was better than that of bacterial richness. In addition, root traits explained more variation than the leaf traits. Overall, plant taxonomic diversity played a more important role than plant functional diversity and soil properties in shaping the soil microbial diversity of the four forests.


2019 ◽  
Vol 362 ◽  
pp. 187-195 ◽  
Author(s):  
Bo Jiang ◽  
Adedoyin Adebayo ◽  
Jianli Jia ◽  
Yi Xing ◽  
Songqiang Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document