scholarly journals Influence of COVID-19 lockdown on the variation of organic aerosols: Insight into its molecular composition and oxidative potential

2021 ◽  
pp. 112597
Author(s):  
Wei Wang ◽  
Yanhao Zhang ◽  
Guodong Cao ◽  
Yuanyuan Song ◽  
Jing Zhang ◽  
...  
2012 ◽  
Vol 9 (8) ◽  
pp. 10429-10465
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
B. Charrière ◽  
R. Sempéré

Abstract. Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting for 1.8–11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.


2012 ◽  
Vol 46 (11) ◽  
pp. 6048-6055 ◽  
Author(s):  
David R. Fooshee ◽  
Tran B. Nguyen ◽  
Sergey A. Nizkorodov ◽  
Julia Laskin ◽  
Alexander Laskin ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
pp. 117-137 ◽  
Author(s):  
Yanbing Fan ◽  
Cong-Qiang Liu ◽  
Linjie Li ◽  
Lujie Ren ◽  
Hong Ren ◽  
...  

Abstract. In order to better understand the molecular composition and sources of organic aerosols in Tianjin, a coastal megacity in North China, ambient fine aerosol (PM2.5) samples were collected on a day/night basis from November to December 2016 and from May to June 2017. The organic molecular composition of PM2.5 components, including aliphatic lipids (n-alkanes, fatty acids, and fatty alcohols), sugar compounds, and photooxidation products from isoprene, monoterpene, β-caryophyllene, naphthalene, and toluene, was analysed using gas chromatography–mass spectrometry. Fatty acids, fatty alcohols, and saccharides were identified as the most abundant organic compound classes among all of the tracers detected in this study during both seasons. High concentrations of most organics at night in winter may be attributed to intensive residential activities such as house heating as well as the low nocturnal boundary layer height. Based on tracer methods, the contributions of the sum of primary and secondary organic carbon (POC and SOC respectively) to aerosol organic carbon (OC) were 24.8 % (daytime) and 27.6 % (night-time) in winter and 38.9 % (daytime) and 32.5 % (night-time) in summer. In detail, POC derived from fungal spores, plant debris, and biomass burning accounted for 2.78 %–31.6 % (12.4 %; please note that values displayed in parentheses in the following are average values) of OC during the daytime and 4.72 %–45.9 % (16.3 %) at night in winter, and 1.28 %–9.89 % (5.24 %) during the daytime and 2.08 %–47.2 % (10.6 %) at night in summer. Biomass-burning-derived OC was the predominant source of POC in this study, especially at night (16.0±6.88 % in winter and 9.62±8.73 % in summer). Biogenic SOC from isoprene, α-∕β-pinene, and β-caryophyllene exhibited obvious seasonal and diurnal patterns, contributing 2.23±1.27 % (2.30±1.35 % during the daytime and 2.18±1.19 % at night) and 8.60±4.02 % (8.98±3.67 % and 8.21±4.39 %) to OC in winter and summer respectively. Isoprene and α-∕β-pinene SOC were obviously elevated in summer, especially during the daytime, mainly due to strong photooxidation. Anthropogenic SOC from toluene and naphthalene oxidation showed higher contributions to OC in summer (21.0±18.5 %) than in winter (9.58±3.68 %). In summer, toluene SOC was the dominant contributor to aerosol OC, and biomass burning OC also accounted for a high contribution to OC, especially at night-time; this indicates that land/sea breezes also play an important role in the aerosol chemistry of the coastal city of Tianjin in North China.


2013 ◽  
Vol 10 (2) ◽  
pp. 653-667 ◽  
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
B. Charrière ◽  
R. Sempéré

Abstract. Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting for 1.8–11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.


2020 ◽  
Vol 239 ◽  
pp. 117722
Author(s):  
Xia Wu ◽  
Fang Cao ◽  
MdMozammel Haque ◽  
Mei-Yi Fan ◽  
Shi-Chun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document