scholarly journals Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

2013 ◽  
Vol 10 (2) ◽  
pp. 653-667 ◽  
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
B. Charrière ◽  
R. Sempéré

Abstract. Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting for 1.8–11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

2012 ◽  
Vol 9 (8) ◽  
pp. 10429-10465
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
B. Charrière ◽  
R. Sempéré

Abstract. Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting for 1.8–11.0% (4.8%) of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA) tracers formed from the oxidation of biogenic volatile organic compounds (VOCs) such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3), followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 10.7% (up to 26.2%) of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8%) and α-pinene SOC (2.9%). In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.


2019 ◽  
Author(s):  
Yuqing Ye ◽  
Zhouqing Xie ◽  
Ming Zhu ◽  
Xinming Wang

Abstract. Organic aerosols are ubiquitous components of atmospheric aerosols. Organosulfate aerosols have been detected in the Arctic Ocean atmosphere and may play an important role in the radiative balance in Polar Regions. Aerosol samples from the Arctic Ocean and Antarctic atmosphere during 2014/2015 CHINARE were analysed by ultrahigh resolution mass spectrometry coupled with negative ion mode electrospray ionization (ESI(-)-UHRMS). Hundreds of organic compounds were detected and tentatively determined by their formulas, including organosulfates (OSs), nitrooxy-organosulfates (NOSs), organonitrates (ONs) and oxygenated hydrocarbons (OxyCs). The number of OSs/NOSs accounted for 28–32 % of the total number of detected molecules at polar sites and ONs were 28–40 %. Organic compounds of Arctic Ocean and Antarctic aerosols had high oxidation states for carbon and a large percentage of high molecular weight formulas; this indicated that aged organic aerosols likely comprise a significant part of the polar atmosphere. We hypothesized that highly oxidized HMW compounds tend to be transported to the polar area from stratospheric reservoirs. Dramatic differences of the molecular characteristics were observed when we compared aerosol samples between polar sites and Guangzhou sites, reflecting the different oxidation mechanisms and atmospheric transmission. The polar sites contained higher fractions of OSs/NOSs and lower fractions of ONs than the Guangzhou sites did; this indicated that the oxidation of NOx was weaker in the polar region. Observing that the fraction and oxidation states of polycyclic aromatic OSs/NOSs polar regions were similar to the Guangzhou urban area but not the rural area implied an anthropogenic influence on OSs/NOSs in remote polar areas. In addition, the contribution of potential precursors (anthropogenic and biogenic volatile organic compounds) to OS and NOS formation as well as the effects of nss-SO4 aerosols, pH and RH on OS formation in polar areas were discussed. Our study presents the first overview of OSs and ONs in the Arctic Ocean and Antarctic atmosphere and promotes the understanding of their characteristics and sources.


2019 ◽  
Vol 59 (4) ◽  
pp. 544-552
Author(s):  
A. A. Vetrov ◽  
E. A. Romankevich

Particulate organic carbon (POC) is one of main component of carbon cycle in the Ocean. In this study an attempt to construct a picture of the distribution and fluxes of POC in the Arctic Ocean adjusting for interchange with the Pacific and Atlantic Oceans has been made. The specificity of this construction is associated with an irregular distribution of POC measurements and complicated structure and hydrodynamics of the waters masses. To overcome these difficulties, Multiple Linear Regression technic (MLR) was performed to test the significant relation between POC, temperature, salinity, as well depth, horizon, latitude and offshore distance. The mapping of POC distribution and its fluxes was carrying out at 38 horizons from 5 to 4150 m (resolution 1°×1°). Data on temperature, salinity, meridional and zonal components of current velocities were obtained from ORA S4 database (Integrated Climate Data Center, http://icdc.cen.uni-hamburg.de/las). The import-export of POC between the Arctic, Atlantic and Pacific Oceans as well as between Arctic Seas was precomputed by summer fluxes. The import of POC in the Arctic Ocean is estimated to be 38±8Tg Cyr-1, and the export is -9.5±4.4Tg Cyr-1.


2011 ◽  
Vol 8 (2) ◽  
pp. 2093-2143 ◽  
Author(s):  
I. P. Semiletov ◽  
I. I. Pipko ◽  
N. E. Shakhova ◽  
O. V. Dudarev ◽  
S. P. Pugach ◽  
...  

Abstract. The Lena River integrates biogeochemical signals from its vast drainage basin and its signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered a quasi-equilibrated processes. Increasing the Lena discharge causes opposite effects on total organic (TOC) and inorganic (TCO2) carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge, because a negative correlation may be found between TC in September and mean discharge in August (a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea). Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C y−1. The annual Lena River discharge of particulate organic carbon (POC) may be equal to 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin's (1994) statement concerning the precipitation of 85–95% of total particulate matter (PM) (and POC) on the marginal "filter", then only about 0.03–0.04 Tg of POC reaches the Laptev Sea from the Lena River. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is about 4 Tg. The Lena River is characterized by relatively high concentrations of primary greenhouse gases: CO2 and dissolved CH4. During all seasons the river is supersaturated in CO2 compared to the atmosphere: up to 1.5–2 fold in summer, and 4–5 fold in winter. This results in a narrow zone of significant CO2 supersaturation in the adjacent coastal sea. Spots of dissolved CH4 in the Lena delta channels may reach 100 nM, but the CH4 concentration decreases to 5–20 nM towards the sea, which suggests only a minor role of riverborne export of CH4 for the East Siberian Arctic Shelf (ESAS) CH4 budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH4 to the Arctic Ocean.


2015 ◽  
Vol 12 (11) ◽  
pp. 3551-3565 ◽  
Author(s):  
D. Doxaran ◽  
E. Devred ◽  
M. Babin

Abstract. Global warming has a significant impact on the regional scale on the Arctic Ocean and surrounding coastal zones (i.e., Alaska, Canada, Greenland, Norway and Russia). The recent increase in air temperature has resulted in increased precipitation along the drainage basins of Arctic rivers. It has also directly impacted land and seawater temperatures with the consequence of melting permafrost and sea ice. An increase in freshwater discharge by main Arctic rivers has been clearly identified in time series of field observations. The freshwater discharge of the Mackenzie River has increased by 25% since 2003. This may have increased the mobilization and transport of various dissolved and particulate substances, including organic carbon, as well as their export to the ocean. The release from land to the ocean of such organic material, which has been sequestered in a frozen state since the Last Glacial Maximum, may significantly impact the Arctic Ocean carbon cycle as well as marine ecosystems. In this study we use 11 years of ocean color satellite data and field observations collected in 2009 to estimate the mass of terrestrial suspended solids and particulate organic carbon delivered by the Mackenzie River into the Beaufort Sea (Arctic Ocean). Our results show that during the summer period, the concentration of suspended solids at the river mouth, in the delta zone and in the river plume has increased by 46, 71 and 33%, respectively, since 2003. Combined with the variations observed in the freshwater discharge, this corresponds to a more than 50% increase in the particulate (terrestrial suspended particles and organic carbon) export from the Mackenzie River into the Beaufort Sea.


Sign in / Sign up

Export Citation Format

Share Document