Urban boundary layer wind speed reduction in summer due to urban growth and environmental consequences in Lisbon

2011 ◽  
Vol 26 (2) ◽  
pp. 241-243 ◽  
Author(s):  
A. Lopes ◽  
J. Saraiva ◽  
M.J. Alcoforado
Author(s):  
Aristofanis Tsiringakis ◽  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Gert-Jan Steeneveld

AbstractUnderstanding the physical processes that affect the turbulent structure of the nocturnal urban boundary layer (UBL) is essential for improving forecasts of air quality and the air temperature in urban areas. Low-level jets (LLJs) have been shown to affect turbulence in the nocturnal UBL. We investigate the interaction of a mesoscale LLJ with the UBL during a 60-h case study. We use observations from two Doppler lidars and results from two high-resolution numerical-weather-prediction models (Weather Research and Forecasting model, and the Met Office Unified Model for limited-area forecasts for the U.K.) to study differences in the occurrence frequency, height, wind speed, and fall-off of LLJs between an urban (London, U.K.) and a rural (Chilbolton, U.K.) site. The LLJs are elevated ($$\approx $$ ≈ 70 m) over London, due to the deeper UBL, while the wind speed and fall-off are slightly reduced with respect to the rural LLJ. Utilizing two idealized experiments in the WRF model, we find that topography strongly affects LLJ characteristics, but there is still a substantial urban influence. Finally, we find that the increase in wind shear under the LLJ enhances the shear production of turbulent kinetic energy and helps to maintain the vertical mixing in the nocturnal UBL.


2011 ◽  
Vol 50 (5) ◽  
pp. 1107-1128 ◽  
Author(s):  
Francisco Salamanca ◽  
Alberto Martilli ◽  
Mukul Tewari ◽  
Fei Chen

AbstractIn the last two decades, mesoscale models (MMs) with urban canopy parameterizations have been widely used to study urban boundary layer processes. Different studies show that such parameterizations are sensitive to the urban canopy parameters (UCPs) that define the urban morphology. At the same time, high-resolution UCP databases are becoming available for several cities. Studies are then needed to determine, for a specific application of an MM, the optimum degree of complexity of the urban canopy parameterizations and the resolution and details necessary in the UCP datasets. In this work, and in an attempt to answer the previous issues, four urban canopy schemes, with different degrees of complexity, have been used with the Weather Research and Forecasting (WRF) model to simulate the planetary boundary layer over the city of Houston, Texas, for two days in August 2000. For the UCP two approaches have been considered: one based on three urban classes derived from the National Land Cover Data of the U.S. Geological Survey and one based on the highly detailed National Urban Database and Access Portal Tool (NUDAPT) dataset with a spatial resolution of 1 km2. Two-meter air temperature and surface wind speed have been used in the evaluation. The statistical analysis shows a tendency to overestimate the air temperatures by the simple bulk scheme and underestimate the air temperatures by the more detailed urban canopy parameterizations. Similarly, the bulk and single-layer schemes tend to overestimate the wind speed while the multilayer schemes underestimate it. The three-dimensional analysis of the meteorological fields revealed a possible impact (to be verified against measurements) of both the urban schemes and the UCP on cloud prediction. Moreover, the impact of air conditioning systems on the air temperature and their energy consumption has been evaluated with the most developed urban scheme for the two simulated days. During the night, this anthropogenic heat was responsible for an increase in the air temperature of up to 2°C in the densest urban areas, and the estimated energy consumption was of the same magnitude as energy consumption obtained with different methods when the most detailed UCP database was used. On the basis of the results for the present case study, one can conclude that if the purpose of the simulation requires only an estimate of the 2-m temperature a simple bulk scheme is sufficient but if the purpose of the simulation is an evaluation of an urban heat island mitigation strategy or the evaluation of the energy consumption due to air conditioning at city scale, it is necessary to use a complex urban canopy scheme and a detailed UCP.


Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

2021 ◽  
Vol 13 (10) ◽  
pp. 5688
Author(s):  
Jangyoul You ◽  
Kipyo You ◽  
Minwoo Park ◽  
Changhee Lee

In this paper, the air flow characteristics and the impact of wind power generators were analyzed according to the porosity and height of the parapet installed in the rooftop layer. The wind speed at the top was decreasing as the parapet was installed. However, the wind speed reduction effect was decreasing as the porosity rate increased. In addition, the increase in porosity significantly reduced turbulence intensity and reduced it by up to 40% compared to no railing. In the case of parapets with sufficient porosity, the effect of reducing turbulence intensity was also increased as the height increased. Therefore, it was confirmed that sufficient parapet height and high porosity reduce the effect of reducing wind speed by parapets and significantly reducing the turbulence intensity, which can provide homogeneous wind speed during installation of wind power generators.


Sign in / Sign up

Export Citation Format

Share Document