scholarly journals A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data

2019 ◽  
Vol 120 ◽  
pp. 104502 ◽  
Author(s):  
Changjiang Xiao ◽  
Nengcheng Chen ◽  
Chuli Hu ◽  
Ke Wang ◽  
Zewei Xu ◽  
...  
2020 ◽  
Author(s):  
Pavan Kumar Jonnakuti ◽  
Udaya Bhaskar Tata Venkata Sai

<p>Sea surface temperature (SST) is a key variable of the global ocean, which affects air-sea interaction processes. Forecasts based on statistics and machine learning techniques did not succeed in considering the spatial and temporal relationships of the time series data. Therefore, to achieve precision in SST prediction we propose a deep learning-based model, by which we can produce a more realistic and accurate account of SST ‘behavior’ as it focuses both on space and time. Our hybrid CNN-LSTM model uses multiple processing layers to learn hierarchical representations by implementing 3D and 2D convolution neural networks as a method to better understand the spatial features and additionally we use LSTM to examine the temporal sequence of relations in SST time-series satellite data. Widespread studies, based on the historical satellite datasets spanning from 1980 - present time, in Indian Ocean region shows that our proposed deep learning-based CNN-LSTM model is extremely capable for short and mid-term daily SST prediction accurately exclusive based on the error estimates (obtained from LSTM) of the forecasted data sets.</p><p><strong>Keywords: Deep Learning, Sea Surface Temperature, CNN, LSTM, Prediction.</strong></p><p> </p>


2020 ◽  
Vol 6 (29) ◽  
pp. eaba1482
Author(s):  
Gang Zheng ◽  
Xiaofeng Li ◽  
Rong-Hua Zhang ◽  
Bin Liu

Forecasting fields of oceanic phenomena has long been dependent on physical equation–based numerical models. The challenge is that many natural processes need to be considered for understanding complicated phenomena. In contrast, rules of the processes are already embedded in the time-series observation itself. Thus, inspired by largely available satellite remote sensing data and the advance of deep learning technology, we developed a purely satellite data–driven deep learning model for forecasting the sea surface temperature evolution associated with a typical phenomenon: a tropical instability wave. During the testing period of 9 years (2010–2019), our model accurately and efficiently forecasts the sea surface temperature field. This study demonstrates the strong potential of the satellite data–driven deep learning model as an alternative to traditional numerical models for forecasting oceanic phenomena.


Sign in / Sign up

Export Citation Format

Share Document