Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs

2007 ◽  
Vol 260 (3-4) ◽  
pp. 582-596 ◽  
Author(s):  
Hans-Michael Seitz ◽  
Gerhard P. Brey ◽  
Jutta Zipfel ◽  
Ulrich Ott ◽  
Stefan Weyer ◽  
...  
2020 ◽  
Vol 6 (7) ◽  
pp. eaay7604 ◽  
Author(s):  
Martin Schiller ◽  
Martin Bizzarro ◽  
Julien Siebert

Nucleosynthetic isotope variability among solar system objects provides insights into the accretion history of terrestrial planets. We report on the nucleosynthetic Fe isotope composition (μ54Fe) of various meteorites and show that the only material matching the terrestrial composition is CI (Ivuna-type) carbonaceous chondrites, which represent the bulk solar system composition. All other meteorites, including carbonaceous, ordinary, and enstatite chondrites, record excesses in μ54Fe. This observation is inconsistent with protracted growth of Earth by stochastic collisional accretion, which predicts a μ54Fe value reflecting a mixture of the various meteorite parent bodies. Instead, our results suggest a rapid accretion and differentiation of Earth during the ~5–million year disk lifetime, when the volatile-rich CI-like material is accreted to the proto-Sun via the inner disk.


2010 ◽  
Vol 291 (1-4) ◽  
pp. 39-47 ◽  
Author(s):  
R.G.A. Baker ◽  
M. Schönbächler ◽  
M. Rehkämper ◽  
H.M. Williams ◽  
A.N. Halliday

Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2009 ◽  
Vol 106 (17) ◽  
pp. 6904-6909 ◽  
Author(s):  
Matthieu Gounelle ◽  
Marc Chaussidon ◽  
Alessandro Morbidelli ◽  
Jean-Alix Barrat ◽  
Cécile Engrand ◽  
...  

Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission.


2016 ◽  
Vol 113 (8) ◽  
pp. 2011-2016 ◽  
Author(s):  
Elishevah M. M. E. Van Kooten ◽  
Daniel Wielandt ◽  
Martin Schiller ◽  
Kazuhide Nagashima ◽  
Aurélien Thomen ◽  
...  

The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.


2016 ◽  
Vol 12 (S325) ◽  
pp. 263-265
Author(s):  
Rustam Guliyev ◽  
Ayyub Guliyev

AbstractIn the present work we investigate the possible relationship of long-period comets with five large and distant trans-Neptunian bodies (Sedna, Eris, 2007 OR10, 2012 VP113and 2008 ST291) in order to determine the probability of the transfer of a part of these kind of comets to the inner of the Solar System. To identify such relationships, we studied the relative positions of the comet orbits and listed TNOs. Using numerical integration methods, we examined dynamical evolution of the comets and have found one encounter of comet C/1861J1 and Eris.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yan-Jie Tang ◽  
Hong-Fu Zhang ◽  
Etienne Deloule ◽  
Ben-Xun Su ◽  
Ji-Feng Ying ◽  
...  

2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


Sign in / Sign up

Export Citation Format

Share Document