Crustal thickness and Poisson's ratios of South China revealed from joint inversion of receiver function and gravity data

2019 ◽  
Vol 510 ◽  
pp. 142-152 ◽  
Author(s):  
Lianghui Guo ◽  
Rui Gao ◽  
Lei Shi ◽  
Zhangrong Huang ◽  
Yawei Ma
2021 ◽  
Author(s):  
Matteo Scarponi ◽  
György Hetényi ◽  
Jaroslava Plomerová ◽  
Stefano Solarino

<p>We present results from a joint inversion study of new seismic and gravity data to constrain a 2D high-resolution image of one of the most prominent geophysical anomalies of the European Alps: the Ivrea geophysical body (IGB). Our work exploits both new data and multidisciplinary a priori constraints, to better resolve the shallow crustal structure in the Ivrea-Verbano zone (IVZ), where the IGB is known to reach anomalously shallow depths and partially outcrop at the surface.</p><p>A variety of previous studies, ranging from gravity surveys to vintage refraction seismics and recent local earthquake tomographies (Solarino et al. 2018, Diehl et al. 2009), provide comprehensive but spatially sparse information on the IGB structure, which we aim at investigating at higher resolution, along a linear profile crossing the IVZ. To this purpose, we deployed 10 broadband seismic stations (MOBNET pool, IG CAS Prague), 5 km spaced along a linear West-East profile, along Val Sesia and crossing Lago Maggiore. This network operated for 27 months and allowed us to produce a new database of ca. 1000 seismic high-quality receiver functions (RFs). In addition, we collected new gravity data in the IVZ, with a data coverage of 1 gravity point every 1-2 km along the seismic profile. The newly collected data was used to set up an inversion scheme, in which RFs and gravity anomalies are jointly used to constrain the shape and the physical property contrasts across the IGB interface.</p><p>We model the IGB as a single interface between far-field constraints, whose geometry is defined by the coordinates of four nodes which may vary in space, and  density and V<sub>S</sub> shear-wave velocity contrasts associated with the interface itself, varying independently. A Markov chain Monte Carlo (MCMC) sampling method with Metropolis-Hastings selection rule was implemented to efficiently explore the model space, directing the search towards better fitting areas.</p><p>For each model, we perform ray-tracing and RFs migration using the actual velocity structure both for migration and computation of synthetic RFs, to be compared with the observations via cross-correlation of the migration images. Similarly, forward gravity modelling for a 2D density distribution is implemented and the synthetic gravity anomaly is compared with the observations along the profile. The joint inversion performance is the product of these two misfits.</p><p>The inversion results show that the IGB reaches the shallowest depths in the western part of the profile, preferentially locating the IGB interface between 3 and 7 km depth over a horizontal distance of ca. 20 km (between Boccioleto and Civiasco, longitudes 8.1 and 8.3). Within this segment, the shallowest point reaches up to 1 km below sea level. The found density and velocity contrasts are in agreement with rock physics properties of various units observed in the field and characterized in earlier studies.</p>


2020 ◽  
Author(s):  
Matteo Scarponi ◽  
György Hetényi ◽  
Jaroslava Plomerová ◽  
Stefano Solarino ◽  
Ludovic Baron

<p>We collected new seismological and gravity data in the Val Sesia and Lago Maggiore regions in NW Italy to constrain the geometry and properties of the Ivrea Geophysical Body. This piece of lower Adriatic lithosphere is known to be at anomalously shallow depth along the inner arc of the Western Alps, yet existing seismological constraints (vintage seismic refraction data, local earthquake tomography) are spatially sparse. With the aim to reach higher spatial resolution in imaging the structure of the IGB, we analyze the seismological data with various receiver function approaches to map the main velocity discontinuities, followed by joint inversion with gravity data to fill the bulk properties of bodies with densities.</p><p>The new data acquisition consisted of two type of campaigns. For seismology, we deployed 10 broadband seismic stations (MOBNET pool, IG CAS Prague) along a linear West-East profile at 5 km spacing along Val Sesia and across the Lago Maggiore. This network continuously recorded seismic data for 27 months at 100 Hz sampling rate. For gravimetry, we compiled existing datasets and then completed the spatial gaps by relative gravity surveys, tied to absolute reference points, to achieve 1 gravity point every 1-2 km along the profile.</p><p>The receiver function (RF) analyses aim at detecting velocity increases with depth: primarily the Moho and the shallow IGB interfaces and their crustal reverberations (multiples), together with their potential dip by analyzing the transverse component RFs. Furthermore, we aim at investigating the sharpness of the velocity gradient across the discontinuities by analyzing the frequency dependence of the corresponding RF peaks. We aim at reproducing the observations by simple synthetic models.</p><p>The 2D joint inversion combines S wave velocity V<sub>S</sub> and bulk density as physical parameters to match both the seismological and gravimetry data. The relationship between the two parameters is initially chosen from the literature, but depending on the first results the relation itself may be inverted for, considering the various high-grade metamorphic rocks observed at the surface in the area, whose properties may not align with classical V<sub>S</sub>–density equations. In conclusion, we propose new constraints on the IGB, demonstrating the advantage of using multi-disciplinary geophysical observations and improved data coverage across the study area.</p>


Author(s):  
Changxin Chen ◽  
Qingtian Lü ◽  
Ling Chen ◽  
Danian Shi ◽  
Jiayong Yan ◽  
...  

2020 ◽  
Author(s):  
Pınar Büyükakpınar ◽  
Mustafa Aktar

<p>This study focuses on the crust of the Eastern Marmara in order to understand of how much the structure is influenced by the tectonic history and also by the activity of the NAF. Recent studies have claimed that the crustal thickness varies significantly on the north and south of the NAF, which is assumed to indicate the separation line between Eurasian and Anatolian Plates. The present study aims to reevaluate the claim above, using newly available data and recently developed tools. The methods used during the study are the receiver function analysis and surface wave analysis. The first one is more intensively applied, since the second one only serves to introduce stability constraint in the inversions. Data are obtained from the permanent network of KOERI and from PIRES arrays.  The main result of the study indicates that the receiver functions for the stations close to the fault zone are essentially very different from the rest and should be treated separately. They show signs of complex 3D structures of which two were successfully analyzed by forward modeling (HRTX and ADVT). A dipping shallow layer is seen to satisfy the major part of the azimuthal variation at these two stations. For the stations off the fault on the other hand, the receiver functions show a more stable behavior and are analyzed successfully by classical methods. CCP stacking, H-k estimation, single and joint inversion with surface waves, are used for that purpose. The results obtained from these totally independent approaches are remarkably consistent with each other. It is observed that the crustal thickness does not vary significantly neither in the NS, nor in the SW direction. A deeper Moho can only be expected on two most NE stations where a gradual transition is more likely than a sharp boundary (SILT and KLYT). The structural trends, although not significant, are generally aligned in the EW direction.  In particular, a slower lower crust is observed in the southern stations, which is possibly linked to the mantle upwelling and thermal transient of the Aegean extension. Otherwise neither the velocity, nor the thickness of the crust does not imply any significant variation across the fault zone, as was previously claimed.</p>


2018 ◽  
Vol 213 (2) ◽  
pp. 1334-1344 ◽  
Author(s):  
Lei Shi ◽  
Lianghui Guo ◽  
Yawei Ma ◽  
Yonghua Li ◽  
Weilai Wang

2021 ◽  
Author(s):  
Xikui Ma ◽  
Jian Liu ◽  
Yingcai Fan ◽  
Weifeng Li ◽  
Jifan Hu ◽  
...  

Two-dimensional (2D) auxetic materials with exceptional negative Poisson’s ratios (NPR) are drawing increasing interest due to the potentials in medicine, fasteners, tougher composites and many other applications. Improving the auxetic...


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


1997 ◽  
Vol 102 (B9) ◽  
pp. 20585-20597 ◽  
Author(s):  
Gregory N. Tsokas ◽  
Richard O. Hansen

Author(s):  
Aaron M. Swedberg ◽  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Ligament volumetric behavior controls fluid and thus nutrient movement as well as the mechanical response of the tissue to applied loads. The reported Poisson’s ratios for tendon and ligament subjected to tensile deformation loading along the fiber direction are large, ranging from 0.8 ± 0.3 in rat tail tendon fascicles [1] to 2.98 ± 2.59 in bovine flexor tendon [2]. These Poisson’s ratios are indicative of volume loss and thus fluid exudation [3,4]. We have developed micromechanical finite element models that can reproduce both the characteristic nonlinear stress-strain behavior and large, strain-dependent Poisson’s ratios seen in tendons and ligaments [5], but these models are computationally expensive and unfeasible for large scale, whole joint models. The objectives of this research were to develop an anisotropic, continuum based constitutive model for ligaments and tendons that can describe strain-dependent Poisson’s ratios much larger than the isotropic limit of 0.5. Further, we sought to demonstrate the ability of the model to describe experimental data, and to show that the model can be combined with biphasic theory to describe the rate- and time-dependent behavior of ligament and tendon.


Sign in / Sign up

Export Citation Format

Share Document