Failure-Tolerant Fully-Distributed OPF Algorithm for System-Level Control of Multi-Terminal DC Grids

2022 ◽  
Vol 206 ◽  
pp. 107763
Author(s):  
Asimenia Korompili ◽  
Antonello Monti
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3344
Author(s):  
Enyu Cai ◽  
Yunqiang Yan ◽  
Lei Dong ◽  
Xiaozhong Liao

Zero-voltage ride through (ZVRT) is the extreme case of low-voltage ride through (LVRT), which represents the optimal grid-connection capability of wind turbines (WTs). Enforcing ZVRT will improve the dynamic performance of WTs and therefore significantly enhance the resiliency of renewable-rich grids. A control scheme that includes a pitch system is an essential control aspect of WTs riding through voltage dips; however, the existing control scheme with a pitch system for LVRT cannot distinguish between a ZVRT status and a power-loss condition, and, consequently, does not meet the ZVRT requirements. A system-level control scheme with a pitch system for ZVRT that includes pitch system modeling, control logic, control circuits, and overspeed protection control (OPC) is proposed in this paper for the first time in ZVRT research. Additionally, the field data are shared, a fault analysis of an overspeed accident caused by a voltage dip that describes the operating status at the WT-collapse moment is presented, and some existing WT design flaws are revealed and corrected by the fault analysis. Finally, the pitching performance during a ZVRT, which significantly affects the ZVRT performance of the WT, is obtained from laboratory and field tests. The results validate the effectiveness of the proposed holistic control scheme.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Austin L. Nash ◽  
Neera Jain

Abstract Increasing performance demands and constraints are necessitating the design of highly complex, integrated systems across multiple sectors, including transportation and energy. However, conventional design approaches for such systems are largely siloed and focused on steady-state operation. To accommodate tightening operating envelopes, new design paradigms are needed that explicitly consider system-component interactions and their implications on transient performance at the system design stage. In this work, we present a model fidelity-based decomposition (MFBD) hierarchical control co-design (HCCD) algorithm designed to optimize system performance characteristics, with an emphasis on robustness to transient disturbances during real-time operation. Our framework integrates system level control co-design (CCD) with high-fidelity component design optimization in a computationally efficient manner for classes of highly coupled systems in which the coupling between subproblems cannot be fully captured using existing analytical relationships. Our algorithm permits scalable decomposition of computationally intensive component models and addresses coupling issues between subproblems in part by introducing an intermediate optimization procedure to solve for reduced-order model parameters that maximize the accuracy of the lumped-parameter control model required in the CCD algorithm. We demonstrate the merits of the MFBD HCCD algorithm, in comparison to an all-at-once (AAO) CCD approach, through a case study on aircraft dynamic thermal management. Our results show that our decomposition-based solution matches the AAO optimal cost to within 2.5% with a 54% reduction in computation time.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 136638-136654
Author(s):  
Asimenia Korompili ◽  
Petros Pandis ◽  
Antonello Monti

2012 ◽  
Vol 616-618 ◽  
pp. 580-585
Author(s):  
Xu Tian ◽  
Ying Dong Wei ◽  
Qi Rong Jiang

Loss and recovery of power supply to electrified locomotives when passing neutral section will caused over voltage and over current in locomotives, which greatly threatens the safety of electrified railways and passengers. A novel uninterruptible flexible connector device is proposed, which comprises of two breakers, back-to-back converters and two transformers. This device can realize flexible switch between voltages of two traction feeders using phase shift technology at variable frequency and make locomotives run pass neutral section at rated power. System configuration, working principle, system-level and device-level control of uninterruptible flexible connector device are introduced and their correctness and effectiveness are validated through simulation.


2019 ◽  
Author(s):  
Amira D. Mahmoud ◽  
Andrew P. Holmes ◽  
Sandy MacMillan ◽  
Oluseye A. Ogunbayo ◽  
Christopher N. Wyatt ◽  
...  

ABSTRACTWe recently demonstrated that the role of the AMP-activated protein kinase (AMPK), a ubiquitously expressed enzyme that governs cell-autonomous metabolic homeostasis, has been extended to system-level control of breathing and thus oxygen and energy (ATP) supply to the body. Here we assess the contribution to the hypoxic ventilatory response (HVR) of two upstream kinases that govern the activities of AMPK. Lkb1, which activates AMPK in response to metabolic stress and CaMKK2 which mediates the alternative Ca2+-dependent mechanism of AMPK activation. HVRs remained unaffected in mice with global deletion of the CaMKK2 gene. By contrast, HVRs were markedly attenuated in mice with conditional deletion of LKB1 in catecholaminergic cells, including carotid body type I cells and brainstem respiratory networks. In these mice hypoxia evoked hypoventilation, apnoea and Cheyne-Stokes-like breathing, rather than hyperventilation. Attenuation of HVRs, albeit less severe, was also conferred in mice carrying ∼90% knockdown of Lkb1 expression. Carotid body afferent input responses were retained following either ∼90% knockdown of Lkb1 or AMPK deletion. In marked contrast, LKB1 deletion virtually abolished carotid body afferent discharge during normoxia, hypoxia and hypercapnia. We conclude that Lkb1 and AMPK, but not CaMKK2, facilitate HVRs at a site downstream of the carotid bodies.


Author(s):  
Zhaojun Qin ◽  
Yuqian Lu

Abstract Mass personalization is arriving. It requires smart manufacturing capabilities to responsively produce personalized products with dynamic batch sizes in a cost-effective way. However, current manufacturing system automation technologies are rigid and inflexible in response to ever-changing production demands and unforeseen internal system status. A manufacturing system is required to address these challenges with adaptive self-organization capabilities to achieve flexible, autonomous, and error-tolerant production. Within the context, the concept of Self-Organizing Manufacturing Network has been proposed to achieve mass personalization production. In this paper, we propose a four-layer system-level control architecture for Self-Organizing Manufacturing Network. This architecture has additional two layers (namely, Semantic Layer and Decision-Making Layer) on Physical Layer and Cyber Layer to improve communication, interaction, and distributed collaborative system automation. In this architecture, manufacturing resources are encapsulated as Semantic Twins to make interoperable peer communication in the manufacturing network. The interaction of Semantic Twins consolidates system status and manufacturing environment that enables multi-agent control technologies to optimize manufacturing operations and system performance.


Sign in / Sign up

Export Citation Format

Share Document