Multi-Agent-Based Self-Organizing Manufacturing Network Towards Mass Personalization

Author(s):  
Zhaojun Qin ◽  
Yuqian Lu

Abstract Mass personalization is arriving. It requires smart manufacturing capabilities to responsively produce personalized products with dynamic batch sizes in a cost-effective way. However, current manufacturing system automation technologies are rigid and inflexible in response to ever-changing production demands and unforeseen internal system status. A manufacturing system is required to address these challenges with adaptive self-organization capabilities to achieve flexible, autonomous, and error-tolerant production. Within the context, the concept of Self-Organizing Manufacturing Network has been proposed to achieve mass personalization production. In this paper, we propose a four-layer system-level control architecture for Self-Organizing Manufacturing Network. This architecture has additional two layers (namely, Semantic Layer and Decision-Making Layer) on Physical Layer and Cyber Layer to improve communication, interaction, and distributed collaborative system automation. In this architecture, manufacturing resources are encapsulated as Semantic Twins to make interoperable peer communication in the manufacturing network. The interaction of Semantic Twins consolidates system status and manufacturing environment that enables multi-agent control technologies to optimize manufacturing operations and system performance.

Author(s):  
James Humann ◽  
Yan Jin

In this paper, a genetic algorithm (GA) is used to discover interaction rules for a cellular self-organizing (CSO) system. The CSO system is a group of autonomous, independent agents that perform tasks through self-organization without any central controller. The agents have a local neighborhood of sensing and react only to other agents within this neighborhood. Their interaction rules are a simple set of direction vectors based on a flocking model. The five local interaction rules are assigned relative weights, and the agents self-organize to display some emergent behavior at the system level. The engineering challenge is to identify which sets of local rules will cause certain desired global behaviors. The global required behaviors of the system, such as flocking or exploration, are translated into a fitness function that can be evaluated at the end of a multi-agent based simulation run. The GA works by tuning the relative weights of the local interaction rules so that the desired global behavior emerges, judged by the fitness function. The GA approach is shown to be successful in tuning the weights of these interaction rules on simulated CSO systems, and, in some cases, the GA actually evolved qualitatively different local interaction “strategies” that displayed equivalent emergent capabilities.


2021 ◽  
Vol 13 (10) ◽  
pp. 5495
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Roxana Ștefănescu ◽  
Cristian Uță ◽  
Irina Dijmărescu

With growing evidence of the operational performance of cyber-physical manufacturing systems, there is a pivotal need for comprehending sustainable, smart, and sensing technologies underpinning data-driven decision-making processes. In this research, previous findings were cumulated showing that cyber-physical production networks operate automatically and smoothly with artificial intelligence-based decision-making algorithms in a sustainable manner and contribute to the literature by indicating that sustainable Internet of Things-based manufacturing systems function in an automated, robust, and flexible manner. Throughout October 2020 and April 2021, a quantitative literature review of the Web of Science, Scopus, and ProQuest databases was performed, with search terms including “Internet of Things-based real-time production logistics”, “sustainable smart manufacturing”, “cyber-physical production system”, “industrial big data”, “sustainable organizational performance”, “cyber-physical smart manufacturing system”, and “sustainable Internet of Things-based manufacturing system”. As research published between 2018 and 2021 was inspected, and only 426 articles satisfied the eligibility criteria. By taking out controversial or ambiguous findings (insufficient/irrelevant data), outcomes unsubstantiated by replication, too general material, or studies with nearly identical titles, we selected 174 mainly empirical sources. Further developments should entail how cyber-physical production networks and Internet of Things-based real-time production logistics, by use of cognitive decision-making algorithms, enable the advancement of data-driven sustainable smart manufacturing.


2021 ◽  
pp. 1-1
Author(s):  
Badr Al Faiya ◽  
Dimitrios Athanasiadis ◽  
Minjiang Chen ◽  
Stephen McArthur ◽  
Ivana Kockar ◽  
...  

2012 ◽  
Vol 457-458 ◽  
pp. 921-926
Author(s):  
Jin Zhi Zhao ◽  
Yuan Tao Liu ◽  
Hui Ying Zhao

A framework for building EDM collaborative manufacturing system using multi-agent technology to support organizations characterized by physically distributed, enterprise-wide, heterogeneous intelligent manufacturing system over Internet is proposed. According to the characteristics of agile EDM collaborative manufacturing system(AEDMCMS), the agent technology is combined with Petri net in order to analyze the model. Based on the basic Petri Net, the definition is extended and the Agent-oriented Petri net (APN) is proposed. AEDMCM is turned into the model of Petri Net which is suitable to the analysis and optimization of manufacturing processes.


Author(s):  
George Kornaros ◽  
Ioannis Christoforakis ◽  
Othon Tomoutzoglou ◽  
Dimitrios Bakoyiannis ◽  
Kallia Vazakopoulou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document