Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: A case study in Basra city, Iraq

2020 ◽  
pp. 101975
Author(s):  
Raad Z. Homod ◽  
Amjad Almusaed ◽  
Asaad Almssad ◽  
Manar K. Jaafar ◽  
Marjan Goodarzi ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


2015 ◽  
Vol 13 (5) ◽  
Author(s):  
Noor Aziah Mohd Ariffin

In hot-humid Malaysia, there are around five million units of housing. Among these, the medium-density terraced are the most built. However, little emphasis was given to designing for thermal comfort and energy efficiency. Consequently, air-conditioning is ubiquitous with ever-rising residential energy consumption. This paper studied passive design systems to improve living conditions and conserve energy through orientation and insulation parameters for terraced housing. Utilizing a triangulation of methods to correlate between thermal comfort and energy performance, findings from the questionnaire survey, data monitoring and computer simulation contended that with the passive design strategies minimum thermal comfort is attainable and energy savings predicted.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


2020 ◽  
Vol 12 (2) ◽  
pp. 482 ◽  
Author(s):  
Francesco Mancini ◽  
Fabio Nardecchia ◽  
Daniele Groppi ◽  
Francesco Ruperto ◽  
Carlo Romeo

The energy refurbishment of the existing building heritage is one of the pillars of Italian energy policy. Aiming for energy efficiency and energy saving in end uses, there are wide and diversified improvement strategies, which include interventions on the building envelope and Heating, Ventilation, and Air Conditioning (HVAC) systems, with the introduction of renewable energy sources. The research aims at evaluating the building energy consumptions and Indoor Environmental Quality (IEQ), varying the airflow rates handled by the HVAC system. A Case Study (the Aula Magna of a university building) is analysed; an in-situ monitoring campaign was carried out to evaluate the trend of some environmental parameters that are considered to be significant when varying the external airflow rates handled by the HVAC system. Additionally, dynamic simulations were carried out, with the aim of evaluating the energy savings coming from the airflow rates reduction. The results of this case study highlight the opportunity to achieve significant energy savings, with only slight variations in IEQ; a 50% reduction in airflow rate would decrease energy consumption by up to 45.2%, while increasing the carbon dioxide concentration from 545 ppm to 655 ppm, while the Particulate Matter and Total Volatile Organic Compounds increase is insignificant.


2017 ◽  
Vol 7 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Kamalesh Panthi ◽  
Kanchan Das ◽  
Tarek Abdel-Salam

Purpose Vacation rental homes, in general, have different energy usage characteristics than traditional residential homes mainly because of the occupancy pattern that changes on a weekly basis. These homes, predominantly larger in size, offer a greater scope for energy savings also because of the wasteful habits of their seasonal occupants. The purpose of this paper is to investigate the causes of energy inefficiencies prevalent in these homes so that appropriate retrofit choices can be offered to homeowners. Design/methodology/approach This research presents a case study of a vacation rental home whose energy consumption was investigated in depth and energy inefficiencies identified through modeling using energy modeling software, eQUEST. Simulations were performed to identify viable retrofit scenarios. Findings While improvement in the building envelope such as providing shades/overhangs on the windows, reducing infiltration and increasing insulation of the exterior wall did not show promising results for savings on energy cost, other improvements such as use of highly efficient lamps, tank-less water heater system and occupancy sensors showed viable investment options with shorter payback periods. It was also found that energy use intensity of sampled houses was about half of the average of US residential buildings, which could primarily be attributed to the seasonal nature of occupancy of these houses. Originality/value There is a dearth of literature pertaining to energy efficiency-related retrofits of coastal vacation homes. This research fills that gap to some extent by addressing this issue with an ultimate aim of assisting homeowners in retrofit decision-making.


2011 ◽  
Vol 2011.21 (0) ◽  
pp. 248-251
Author(s):  
Ari YOSHII ◽  
Yosuke UDAGAWA ◽  
Masahide YANAGI ◽  
Shisei WARAGAI ◽  
Keigo MATSUO ◽  
...  

2021 ◽  
Vol 2069 (1) ◽  
pp. 012006
Author(s):  
A Kabore ◽  
W Maref ◽  
C O Plamondon

Abstract This document is a case study of hemp-based materials integrated into the building envelope for African and North American’s applications. The objective is to evaluate the energy performance of hemp concrete for construction in Montreal, Canada, where heating predominates and in Dori, Burkina Faso, where air conditioning predominates. The effect of thermal and hygrothermal comfort of hemp concrete, glass wool, cement block and compressed earth brick walls were simulated to quantify the benefits on overheating during the hottest months for the city of Dori and the risk of mould growth in the walls of the building in winter for the city of Montreal.


2021 ◽  
Vol 12 (6) ◽  
pp. 1217
Author(s):  
Fahmi Nur Hakim ◽  
Yana Muhamadinah ◽  
Atthaillah Atthaillah ◽  
Rizki A. Mangkuto ◽  
Anugrah S. Sudarsono

Sign in / Sign up

Export Citation Format

Share Document