Recent progress in polyaniline composites for high capacity energy storage: A review

2021 ◽  
Vol 42 ◽  
pp. 103018
Author(s):  
Humayara Naj Heme ◽  
Md Shah Nuruddin Alif ◽  
S.M. Sultan Mahmud Rahat ◽  
Sanzeeda Baig Shuchi
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Aleksander Cholewinski ◽  
Pengxiang Si ◽  
Marianna Uceda ◽  
Michael Pope ◽  
Boxin Zhao

Binders play an important role in electrode processing for energy storage systems. While conventional binders often require hazardous and costly organic solvents, there has been increasing development toward greener and less expensive binders, with a focus on those that can be processed in aqueous conditions. Due to their functional groups, many of these aqueous binders offer further beneficial properties, such as higher adhesion to withstand the large volume changes of several high-capacity electrode materials. In this review, we first discuss the roles of binders in the construction of electrodes, particularly for energy storage systems, summarize typical binder characterization techniques, and then highlight the recent advances on aqueous binder systems, aiming to provide a stepping stone for the development of polymer binders with better sustainability and improved functionalities.


2021 ◽  
Vol 39 ◽  
pp. 102597
Author(s):  
Nikolay E. Galushkin ◽  
Nataliya N. Yazvinskaya ◽  
Dmitriy N. Galushkin

RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2019 ◽  
Vol 7 (2) ◽  
pp. 520-530 ◽  
Author(s):  
Qiulong Li ◽  
Qichong Zhang ◽  
Chenglong Liu ◽  
Juan Sun ◽  
Jiabin Guo ◽  
...  

The fiber-shaped Ni–Fe battery takes advantage of high capacity of hierarchical CoP@Ni(OH)2 NWAs/CNTF core–shell heterostructure and spindle-like α-Fe2O3/CNTF electrodes to yield outstanding electrochemical performance, demonstrating great potential for next-generation portable wearable energy storage devices.


2016 ◽  
Vol 18 (46) ◽  
pp. 31361-31377 ◽  
Author(s):  
Guanhui Yang ◽  
Yu Zhang ◽  
Yanshan Huang ◽  
Muhammad Imran Shakir ◽  
Yuxi Xu

This review provided an overview of recent progress on composites of conjugated carbonyl compounds and carbon nanomaterials for energy storage.


2013 ◽  
Vol 19 (34) ◽  
pp. 11235-11240 ◽  
Author(s):  
Heng Wang ◽  
Zhaoyang Zeng ◽  
Naoya Kawasaki ◽  
Hellmut Eckert ◽  
Hirofumi Yoshikawa ◽  
...  

Author(s):  
Peisen Wu ◽  
Yongbo Wu ◽  
Kaiyin Zhu ◽  
Guozheng Ma ◽  
Xiaoming Lin ◽  
...  

Lithium-sulfur (Li-S) batteries have recently caught a growing number of attentions as next-generation energy storage systems on account of their outstanding theoretical energy density, environmental friendliness and economical nature. However,...


Small ◽  
2018 ◽  
Vol 14 (51) ◽  
pp. 1870251 ◽  
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Nitinkumar Batra ◽  
Tamilarasan Palanisamy ◽  
Dalaver H. Anjum ◽  
...  

2016 ◽  
Vol 7 ◽  
pp. 1350-1360 ◽  
Author(s):  
Christian Suchomski ◽  
Ben Breitung ◽  
Ralf Witte ◽  
Michael Knapp ◽  
Sondes Bauer ◽  
...  

Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol–gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, 57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe3+ ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)tet[Zn0.68Fe1.32]octO4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable.


Sign in / Sign up

Export Citation Format

Share Document