Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance

2022 ◽  
Vol 48 ◽  
pp. 103871
Author(s):  
Priyanka Lamba ◽  
Parul Singh ◽  
Pankaj Singh ◽  
Pushpa Singh ◽  
Bharti ◽  
...  
2019 ◽  
Vol 7 (39) ◽  
pp. 22163-22188 ◽  
Author(s):  
Haifa Zhai ◽  
Bao Yu Xia ◽  
Ho Seok Park

The key factors of designing the architectural concepts, synthesis methods, and microstructural and compositional control of Ti-based electrodes are described for applications in electrochemical sodium ion storage and removal.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 703 ◽  
Author(s):  
Qi Li ◽  
Michael Horn ◽  
Yinong Wang ◽  
Jennifer MacLeod ◽  
Nunzio Motta ◽  
...  

Supercapacitors are a highly promising class of energy storage devices due to their high power density and long life cycle. Conducting polymers (CPs) and organic molecules are potential candidates for improving supercapacitor electrodes due to their low cost, large specific pseudocapacitance and facile synthesis methods. Graphene, with its unique two-dimensional structure, shows high electrical conductivity, large specific surface area and outstanding mechanical properties, which makes it an excellent material for lithium ion batteries, fuel cells and supercapacitors. The combination of CPs and graphene as electrode material is expected to boost the properties of supercapacitors. In this review, we summarize recent reports on three different CP/graphene composites as electrode materials for supercapacitors, discussing synthesis and electrochemical performance. Novel flexible and wearable devices based on CP/graphene composites are introduced and discussed, with an eye to recent developments and challenges for future research directions.


2018 ◽  
Vol 6 (19) ◽  
pp. 8815-8838 ◽  
Author(s):  
Qinghong Wang ◽  
Jiantie Xu ◽  
Wenchao Zhang ◽  
Minglei Mao ◽  
Zengxi Wei ◽  
...  

In this review, we mainly overview the structures, synthesis methods and the morphology control of vanadium-based electrode materials for sodium ion batteries. In addition, the major issues, emerging challenges and some perspectives on the development of V based electrode materials for sodium ion batteries are also discussed.


2011 ◽  
Vol 1311 ◽  
Author(s):  
Sujit K Mondal ◽  
Jason Rugolo ◽  
Michael J. Aziz

ABSTRACTStable, catalytically active, and inexpensive halogen electrodes are essential for the success of the regenerative hydrogen-halogen fuel cell as a competitive means of large-scale electricity storage. We report the synthesis and electrochemical testing of two novel electrode materials — ruthenium-cobalt and ruthenium-manganese alloy oxides. These alloys were fabricated by wet chemical synthesis methods as a coating on a titanium metal substrate and tested for chloride and bromide oxidation and for chlorine and bromine reduction. These alloy oxides exhibit high catalytic potency and good electrical conductivity good stability, while having a significantly reduced precious metal composition compared to commercial chloride oxidation electrodes made of the oxide of a ruthenium-titanium alloy. We tested alloys with Ru content as low as 1% that maintained good electrochemical activity. Stability tests indicate immeasurably small mass loss.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5404
Author(s):  
Rayhane Zribi ◽  
Giovanni Neri

Mo-based layered nanostructures are two-dimensional (2D) nanomaterials with outstanding characteristics and very promising electrochemical properties. These materials comprise nanosheets of molybdenum (Mo) oxides (MoO2 and MoO3), dichalcogenides (MoS2, MoSe2, MoTe2), and carbides (MoC2), which find application in electrochemical devices for energy storage and generation. In this feature paper, we present the most relevant characteristics of such Mo-based layered compounds and their use as electrode materials in electrochemical sensors. In particular, the aspects related to synthesis methods, structural and electronic characteristics, and the relevant electrochemical properties, together with applications in the specific field of electrochemical biomolecule sensing, are reviewed. The main features, along with the current status, trends, and potentialities for biomedical sensing applications, are described, highlighting the peculiar properties of Mo-based 2D-nanomaterials in this field.


Solids ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 232-248
Author(s):  
Mulugeta Wayu

Global increasing demand in the need of energy leads to the development of non-conventional, high power energy sources. Supercapacitors (SCs) are one of the typical non-conventional energy storage devices which are based on the principle of electrochemical energy conversion. SCs are promising energy storage devices for better future energy technology. Increasing progress has been made in the development of applied and fundamental aspects of SCs. Manganese oxide electrode materials have been well studied; however, their capacitive performance is still inadequate for practical applications. Recent research is mainly focused on enhancing manganese oxide capacitive performance through the incorporation of electrically conductive materials and by controlling its morphology to reveal a more active surface area for redox reactions. In this review, progress in the applications of manganese oxide carbon-based materials towards the development of highly effective SCs is briefly discussed. In this regard, manganese oxide carbon-based nanocomposites synthesis methods and techniques used to approximate the capacitance of electrode materials are discussed.


Author(s):  
Ceren Karaman ◽  
Onur Karaman ◽  
Necip Atar ◽  
Mehmet Lütfi Yola

Biomass-derived carbonaceous materials have been deemed to be one of the up-and-coming electrode materials for high-performance energy storage systems thanks to their cost-neutral abundant resources, sustainable nature, easy synthesis methods,...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claire McKay Bowen ◽  
Joshua Snoke

Differentially private synthetic data generation offers a recent solution to release analytically useful data while preserving the privacy of individuals in the data. In order to utilize these algorithms for public policy decisions, policymakers need an accurate understanding of these algorithms' comparative performance. Correspondingly, data practitioners also require standard metrics for evaluating the analytic qualities of the synthetic data. In this paper, we present an in-depth evaluation of several differentially private synthetic data algorithms using actual differentially private synthetic data sets created by contestants in the recent National Institute of Standards and Technology Public Safety Communications Research (NIST PSCR) Division's ``"Differential Privacy Synthetic Data Challenge." We offer analyses of these algorithms based on both the accuracy of the data they create and their usability by potential data providers. We frame the methods used in the NIST PSCR data challenge within the broader differentially private synthetic data literature. We implement additional utility metrics, including two of our own, on the differentially private synthetic data and compare mechanism utility on three categories. Our comparative assessment of the differentially private data synthesis methods and the quality metrics shows the relative usefulness, general strengths and weaknesses, preferred choices of algorithms and metrics. Finally we describe the implications of our evaluation for policymakers seeking to implement differentially private synthetic data algorithms on future data products.


2014 ◽  
Vol 1 (2) ◽  
pp. 103-116
Author(s):  
Md. Aminul Islam ◽  
M. Anwarul Kabir Bhuiya ◽  
M. Saidul Islam

Nanoparticles are key components in the advancement of future energy technologies; thus, strategies for preparing nanoparticles in large volume by techniques that are cost-effective are required. In the substitution of fossil-fuels by renewable energy resources, nanometersized particles play a key role for synthesizing energy vectors from varying and heterogeneous biomass feedstocks. They are extensively used in reformers for the production of hydrogen from solid, liquid, or gaseous energy carriers. Catalyst activities depend critically on their size-dependent properties. Nanoparticles are further indispensable as electrocatalysts in fuel cells and other electrochemical converters. The desire to increase the activity per unit area, and decrease the necessary amount of the expensive catalytic standard, It is clear that performance and commercialization of fuel cells depend on electrode materials performance. The application of pt  nanomaterials as an electrode in the field of fuel cell  has become a new, growing area of interest in recent years. We review chemical process for synthesis of pt nanoparticles. Recent developments in syntheses process of pure & mixed platinum nanoparticles has briefly reviewed specifically for applications in fuel cells. As the physicochemical properties of noble-metal nanostructures are strongly dependent upon shape and size, the development of reliable synthesis methods for the production of nanocrystals with well-defined size and morphology have been discussed briefly. The role of nanostructured supports for the nanoparticles, such as ordered mesoporous carbon, dendrimer have also discussed. And size of the nanoparticles obtained in deferent process and their temperature dependence has also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document