scholarly journals A Review on Chemical Synthesis Process of Platinum Nanoparticles

2014 ◽  
Vol 1 (2) ◽  
pp. 103-116
Author(s):  
Md. Aminul Islam ◽  
M. Anwarul Kabir Bhuiya ◽  
M. Saidul Islam

Nanoparticles are key components in the advancement of future energy technologies; thus, strategies for preparing nanoparticles in large volume by techniques that are cost-effective are required. In the substitution of fossil-fuels by renewable energy resources, nanometersized particles play a key role for synthesizing energy vectors from varying and heterogeneous biomass feedstocks. They are extensively used in reformers for the production of hydrogen from solid, liquid, or gaseous energy carriers. Catalyst activities depend critically on their size-dependent properties. Nanoparticles are further indispensable as electrocatalysts in fuel cells and other electrochemical converters. The desire to increase the activity per unit area, and decrease the necessary amount of the expensive catalytic standard, It is clear that performance and commercialization of fuel cells depend on electrode materials performance. The application of pt  nanomaterials as an electrode in the field of fuel cell  has become a new, growing area of interest in recent years. We review chemical process for synthesis of pt nanoparticles. Recent developments in syntheses process of pure & mixed platinum nanoparticles has briefly reviewed specifically for applications in fuel cells. As the physicochemical properties of noble-metal nanostructures are strongly dependent upon shape and size, the development of reliable synthesis methods for the production of nanocrystals with well-defined size and morphology have been discussed briefly. The role of nanostructured supports for the nanoparticles, such as ordered mesoporous carbon, dendrimer have also discussed. And size of the nanoparticles obtained in deferent process and their temperature dependence has also discussed briefly.

2017 ◽  
Vol 5 (37) ◽  
pp. 19857-19865 ◽  
Author(s):  
Kui Li ◽  
Zhao Jin ◽  
Junjie Ge ◽  
Changpeng Liu ◽  
Wei Xing

A robust architecture, consisting of Pt nanoparticles partially-embedded in carbon spheres with low loading, brings about outstanding electrocatalytic performance in DMFCs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1463 ◽  
Author(s):  
Vishma Pratap Sur ◽  
Marketa Kominkova ◽  
Zaneta Buchtova ◽  
Kristyna Dolezelikova ◽  
Ondrej Zitka ◽  
...  

The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel “green” route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.


2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


2021 ◽  
Vol 13 (4) ◽  
pp. 2225
Author(s):  
Ralf Peters ◽  
Janos Lucian Breuer ◽  
Maximilian Decker ◽  
Thomas Grube ◽  
Martin Robinius ◽  
...  

Achieving the CO2 reduction targets for 2050 requires extensive measures being undertaken in all sectors. In contrast to energy generation, the transport sector has not yet been able to achieve a substantive reduction in CO2 emissions. Measures for the ever more pressing reduction in CO2 emissions from transportation include the increased use of electric vehicles powered by batteries or fuel cells. The use of fuel cells requires the production of hydrogen and the establishment of a corresponding hydrogen production system and associated infrastructure. Synthetic fuels made using carbon dioxide and sustainably-produced hydrogen can be used in the existing infrastructure and will reach the extant vehicle fleet in the medium term. All three options require a major expansion of the generation capacities for renewable electricity. Moreover, various options for road freight transport with light duty vehicles (LDVs) and heavy duty vehicles (HDVs) are analyzed and compared. In addition to efficiency throughout the entire value chain, well-to-wheel efficiency and also other aspects play an important role in this comparison. These include: (a) the possibility of large-scale energy storage in the sense of so-called ‘sector coupling’, which is offered only by hydrogen and synthetic energy sources; (b) the use of the existing fueling station infrastructure and the applicability of the new technology on the existing fleet; (c) fulfilling the power and range requirements of the long-distance road transport.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Yiqiu Xiang ◽  
Ling Xin ◽  
Jiwei Hu ◽  
Caifang Li ◽  
Jimei Qi ◽  
...  

Extensive use of fossil fuels can lead to energy depletion and serious environmental pollution. Therefore, it is necessary to solve these problems by developing clean energy. Graphene materials own the advantages of high electrocatalytic activity, high conductivity, excellent mechanical strength, strong flexibility, large specific surface area and light weight, thus giving the potential to store electric charge, ions or hydrogen. Graphene-based nanocomposites have become new research hotspots in the field of energy storage and conversion, such as in fuel cells, lithium-ion batteries, solar cells and thermoelectric conversion. Graphene as a catalyst carrier of hydrogen fuel cells has been further modified to obtain higher and more uniform metal dispersion, hence improving the electrocatalyst activity. Moreover, it can complement the network of electroactive materials to buffer the change of electrode volume and prevent the breakage and aggregation of electrode materials, and graphene oxide is also used as a cheap and sustainable proton exchange membrane. In lithium-ion batteries, substituting heteroatoms for carbon atoms in graphene composite electrodes can produce defects on the graphitized surface which have a good reversible specific capacity and increased energy and power densities. In solar cells, the performance of the interface and junction is enhanced by using a few layers of graphene-based composites and more electron-hole pairs are collected; therefore, the conversion efficiency is increased. Graphene has a high Seebeck coefficient, and therefore, it is a potential thermoelectric material. In this paper, we review the latest progress in the synthesis, characterization, evaluation and properties of graphene-based composites and their practical applications in fuel cells, lithium-ion batteries, solar cells and thermoelectric conversion.


2021 ◽  
Vol 22 (10) ◽  
pp. 5401
Author(s):  
Marta Dziewięcka ◽  
Mirosława Pawlyta ◽  
Łukasz Majchrzycki ◽  
Katarzyna Balin ◽  
Sylwia Barteczko ◽  
...  

Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers’ environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongkun He ◽  
Chao Gao

We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs). The superparamagnetic Fe3O4nanoparticles with average size of4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.


Sign in / Sign up

Export Citation Format

Share Document