Automatic trimap generation and artifact reduction in alpha matte using unknown region detection

2019 ◽  
Vol 133 ◽  
pp. 242-259
Author(s):  
Chris Henry ◽  
Sang-Woong Lee
Author(s):  
Dawa Chyophel Lepcha ◽  
Bhawna Goyal ◽  
Ayush Dogra

In the era of rapid growth of technologies, image matting plays a key role in image and video editing along with image composition. In many significant real-world applications such as film production, it has been widely used for visual effects, virtual zoom, image translation, image editing and video editing. With recent advancements in digital cameras, both professionals and consumers have become increasingly involved in matting techniques to facilitate image editing activities. Image matting plays an important role to estimate alpha matte in the unknown region to distinguish foreground from the background region of an image using an input image and the corresponding trimap of an image which represents a foreground and unknown region. Numerous image matting techniques have been proposed recently to extract high-quality matte from image and video sequences. This paper illustrates a systematic overview of the current image and video matting techniques mostly emphasis on the current and advanced algorithms proposed recently. In general, image matting techniques have been categorized according to their underlying approaches, namely, sampling-based, propagation-based, combination of sampling and propagation-based and deep learning-based algorithms. The traditional image matting algorithms depend primarily on color information to predict alpha matte such as sampling-based, propagation-based or combination of sampling and propagation-based algorithms. However, these techniques mostly use low-level features and suffer from high-level background which tends to produce unwanted artifacts when color is same or semi-transparent in the foreground object. Image matting techniques based on deep learning have recently introduced to address the shortcomings of traditional algorithms. Rather than simply depending on the color information, it uses deep learning mechanism to estimate the alpha matte using an input image and the trimap of an image. A comprehensive survey on recent image matting algorithms and in-depth comparative analysis of these algorithms has been thoroughly discussed in this paper.


2018 ◽  
Author(s):  
Benedikt Schwaiger ◽  
Alexandra Gersing ◽  
Daniela Muenzel ◽  
Julia Dangelmaier ◽  
Peter Prodinger ◽  
...  

Author(s):  
Tu Huynh-Kha ◽  
Thuong Le-Tien ◽  
Synh Ha ◽  
Khoa Huynh-Van

This research work develops a new method to detect the forgery in image by combining the Wavelet transform and modified Zernike Moments (MZMs) in which the features are defined from more pixels than in traditional Zernike Moments. The tested image is firstly converted to grayscale and applied one level Discrete Wavelet Transform (DWT) to reduce the size of image by a half in both sides. The approximation sub-band (LL), which is used for processing, is then divided into overlapping blocks and modified Zernike moments are calculated in each block as feature vectors. More pixels are considered, more sufficient features are extracted. Lexicographical sorting and correlation coefficients computation on feature vectors are next steps to find the similar blocks. The purpose of applying DWT to reduce the dimension of the image before using Zernike moments with updated coefficients is to improve the computational time and increase exactness in detection. Copied or duplicated parts will be detected as traces of copy-move forgery manipulation based on a threshold of correlation coefficients and confirmed exactly from the constraint of Euclidean distance. Comparisons results between proposed method and related ones prove the feasibility and efficiency of the proposed algorithm.


2018 ◽  
Vol 12 (9) ◽  
pp. 1663-1672 ◽  
Author(s):  
Abdul Rahman El Sayed ◽  
Abdallah El Chakik ◽  
Hassan Alabboud ◽  
Adnan Yassine

2019 ◽  
Vol 100 (5) ◽  
pp. 269-277 ◽  
Author(s):  
J. Greffier ◽  
A. Larbi ◽  
J. Frandon ◽  
P.A. Daviau ◽  
J.P. Beregi ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 768
Author(s):  
Jin Pan ◽  
Xiaoming Ou ◽  
Liang Xu

Forest fires are serious disasters that affect countries all over the world. With the progress of image processing, numerous image-based surveillance systems for fires have been installed in forests. The rapid and accurate detection and grading of fire smoke can provide useful information, which helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks (CNN) have yielded excellent performance in image recognition. Previous studies mostly paid attention to CNN-based image classification for fire detection. However, the research of CNN-based region detection and grading of fire is extremely scarce due to a challenging task which locates and segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This paper presents a novel collaborative region detection and grading framework for fire smoke using a weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework can simultaneously implement the early-stage alarm, region detection, classification, and grading of fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised fine segmentation method, which consists of a segmentation network and a decision network. We aggregate image-level information, instead of expensive pixel-level labels, from all training images into the segmentation network, which simultaneously locates and segments fire smoke regions. To train the segmentation network using only image-level annotations, we propose a two-stage weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly detect the region of fire smoke, and a new region-refining segmentation algorithm is further used to accurately identify this region. The decision network incorporating a residual spatial attention module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster R-CNN, we first introduced a knowledge distillation technique to compress the structure of this model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity level. We evaluated the proposed approach using a developed fire smoke dataset, which included five different scenes varying by the fire smoke level. The proposed method exhibited competitive performance compared to state-of-the-art methods.


2021 ◽  
pp. 028418512110290
Author(s):  
Georg Osterhoff ◽  
Florian A Huber ◽  
Laura C Graf ◽  
Ferdinand Erdlen ◽  
Hans-Christoph Pape ◽  
...  

Background Carbon-reinforced PEEK (C-FRP) implants are non-magnetic and have increasingly been used for the fixation of spinal instabilities. Purpose To compare the effect of different metal artifact reduction (MAR) techniques in magnetic resonance imaging (MRI) on titanium and C-FRP spinal implants. Material and Methods Rod-pedicle screw constructs were mounted on ovine cadaver spine specimens and instrumented with either eight titanium pedicle screws or pedicle screws made of C-FRP and marked with an ultrathin titanium shell. MR scans were performed of each configuration on a 3-T scanner. MR sequences included transaxial conventional T1-weighted turbo spin echo (TSE) sequences, T2-weighted TSE, and short-tau inversion recovery (STIR) sequences and two different MAR-techniques: high-bandwidth (HB) and view-angle-tilting (VAT) with slice encoding for metal artifact correction (SEMAC). Metal artifact degree was assessed by qualitative and quantitative measures. Results There was a much stronger effect on artifact reduction with using C-FRP implants compared to using specific MRI MAR-techniques (screw shank: P < 0.001; screw tulip: P < 0.001; rod: P < 0.001). VAT-SEMAC sequences were able to reduce screw-related signal loss artifacts in constructs with titanium screws to a certain degree. Constructs with C-FRP screws showed less artifact-related implant diameter amplification when compared to constructs with titanium screws ( P < 0.001). Conclusion Constructs with C-FRP screws are associated with significantly less artifacts compared to constructs with titanium screws including dedicated MAR techniques. Artifact-reducing sequences are able to reduce implant-related artifacts. This effect is stronger in constructs with titanium screws than in constructs with C-FRP screws.


2021 ◽  
Vol 24 ◽  
pp. 100573
Author(s):  
Goli Khaleghi ◽  
Mohammad Hosntalab ◽  
Mahdi Sadeghi ◽  
Reza Reiazi ◽  
Seied Rabi Mahdavi

Sign in / Sign up

Export Citation Format

Share Document