Taitoko, an advanced code for tsunami propagation, developed at the French Tsunami Warning Centers

2021 ◽  
Vol 88 ◽  
pp. 72-88
Author(s):  
P. Heinrich ◽  
A. Jamelot ◽  
A. Cauquis ◽  
A. Gailler
2013 ◽  
Vol 13 (10) ◽  
pp. 2465-2482 ◽  
Author(s):  
A. Gailler ◽  
H. Hébert ◽  
A. Loevenbruck ◽  
B. Hernandez

Abstract. A model-based tsunami prediction system has been developed as part of the French Tsunami Warning Center (operational since 1 July 2012). It involves a precomputed unit source functions database (i.e., a number of tsunami model runs that are calculated ahead of time and stored). For the Mediterranean basin, the faults of the unit functions are placed adjacent to each other, following the discretization of the main seismogenic faults. An automated composite scenarios calculation tool is implemented to allow the simulation of any tsunami propagation scenario (i.e., of any seismic moment). Uncertainty on the magnitude of the detected event and inaccuracy of the epicenter location are taken into account in the composite scenarios calculation. Together with this forecasting system, another operational tool based on real time computing is implemented as part of the French Tsunami Warning Center. This second tsunami simulation tool takes advantage of multiprocessor approaches and more realistic seismological parameters, once the focal mechanism is established. Three examples of historical earthquakes are presented, providing warning refinement compared to the rough tsunami risk map given by the model-based decision matrix.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Yuchen Wang ◽  
Kenji Satake ◽  
Iyan E. Mulia

AbstractWestern Mediterranean Basin (WMB) is among tsunamigenic zones with numerous historical records of tsunami damage and deaths. Most recently, a moderate tsunami on 21 May 2003 offshore Algeria, North Africa, was a fresh call for strengthening tsunami warning capabilities in this enclosed water basin. Here, we propose to deploy offshore bottom pressure gauges (OBPGs) and to adopt the framework of a tsunami data assimilation (TDA) approach for providing timely tsunami forecasts. We demonstrate the potential enhancement of the tsunami warning system through the case study of the 2003 Algeria tsunami. Four scenarios of OBPG arrangements involving 10, 5, 3 and 2 gauges are considered. The offshore gauges are located at distances of 120–300 km from the North African coast. The warning lead times are 20, 30, 48 and 55 min for four points of interest considered in this study: Ibiza, Palma, Sant Antoni and Barcelona, respectively. The forecast accuracies are in the range of 69–85% for the four OBPG scenarios revealing acceptable accuracies for tsunami warnings. We conclude that installation of OBPGs in the WMB can be helpful for providing successful and timely tsunami forecasts. We note that the OBPG scenarios proposed in this study are applicable only for the case of the 2003 Algeria tsunami. Further studies including sensitivity analyses (e.g., number of OBPG stations; earthquake magnitude, strike, epicenter) are required in order to determine OBPG arrangements that could be useful for various earthquake scenarios in the WMB.


Author(s):  
J. Selva ◽  
A. Amato ◽  
A. Armigliato ◽  
R. Basili ◽  
F. Bernardi ◽  
...  

AbstractDestructive tsunamis are most often generated by large earthquakes occurring at subduction interfaces, but also other “atypical” sources—defined as crustal earthquakes and non-seismic sources altogether—may cause significant tsunami threats. Tsunamis may indeed be generated by different sources, such as earthquakes, submarine or coastal landslides, volcano-related phenomena, and atmospheric perturbations. The consideration of atypical sources is important worldwide, but it is especially prominent in complex tectonic settings such as the Mediterranean, the Caribbean, or the Indonesian archipelago. The recent disasters in Indonesia in 2018, caused by the Palu-Sulawesi magnitude Mw 7.5 crustal earthquake and by the collapse of the Anak-Krakatau volcano, recall the importance of such sources. Dealing with atypical sources represents a scientific, technical, and computational challenge, which depends on the capability of quantifying and managing uncertainty efficiently and of reducing it with accurate physical modelling. Here, we first introduce the general framework in which tsunami threats are treated, and then we review the current status and the expected future development of tsunami hazard quantifications and of the tsunami warning systems in Italy, with a specific focus on the treatment of atypical sources. In Italy, where the memory of historical atypical events like the 1908 Messina earthquake or the relatively recent 2002 Stromboli tsunami is still vivid, specific attention has been indeed dedicated to the progressive development of innovative strategies to deal with such atypical sources. More specifically, we review the (national) hazard analyses and their application for coastal planning, as well as the two operating tsunami warning systems: the national warning system for seismically generated tsunamis (SiAM), whose upstream component—the CAT-INGV—is also a Tsunami Service Provider of the North-eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) coordinated by the Intergovernmental Coordination Group established by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, and the local warning system for tsunamis generated by volcanic slides along the Sciara del Fuoco of Stromboli volcano. Finally, we review the state of knowledge about other potential tsunami sources that may generate significant tsunamis for the Italian coasts, but that are not presently considered in existing tsunami warning systems. This may be considered the first step towards their inclusion in the national tsunami hazard and warning programs.


2010 ◽  
Vol 46 (3) ◽  
pp. 275-285 ◽  
Author(s):  
V. N. Chebrov ◽  
A. A. Gusev ◽  
V. K. Gusyakov ◽  
V. N. Mishatkin ◽  
A. A. Poplavskii

1989 ◽  
Vol 79 (4) ◽  
pp. 1177-1193
Author(s):  
Jacques Talandier ◽  
Emile A. Okal

Abstract We have developed a new magnitude scale, Mm, based on the measurement of mantle Rayleigh-wave energy in the 50 to 300 sec period range, and directly related to the seismic moment through Mm = log10M0 − 20. Measurements are taken on the first passage of Rayleigh waves, recorded on-scale on broadband instruments with adequate dynamical range. This allows estimation of the moment of an event within minutes of the arrival of the Rayleigh wave, and with a standard deviation of ±0.2 magnitude units. In turn, the knowledge of the seismic moment allows computation of an estimate of the high-seas amplitude of a range of expectable tsunami heights. The latter, combined with complementary data from T-wave duration and historical references, have been integrated into an automated procedure of tsunami warning by the Centre Polynésien de Prévention des Tsunamis (CPPT), in Papeete, Tahiti.


Author(s):  
Jui-Chun Freya Chen ◽  
Wu-Cheng Chi ◽  
Chu-Fang Yang

Abstract Developing new ways to observe tsunami contributes to tsunami research. Tidal and deep-ocean gauges are typically used for coastal and offshore observations. Recently, tsunami-induced ground tilts offer a new possibility. The ground tilt signal accompanied by 2010 Mw 8.8 Chilean earthquake were observed at a tiltmeter network in Japan. However, tiltmeter stations are usually not as widely installed as broadband seismometers in other countries. Here, we studied broadband seismic records from Japan’s F-net and found ground tilt signals consistent with previously published tiltmeter dataset for this particular tsunamic event. Similar waveforms can also be found in broadband seismic networks in other countries, such as Taiwan, as well as an ocean-bottom seismometer. We documented a consistent time sequence of evolving back-azimuth directions of the tsunami waves at different stages of tsunami propagation through beamforming-frequency–wavenumber analysis and particle-motion analysis; the outcomes are consistent with the tsunami propagation model provided by the Pacific Tsunami Warning Center. These results shown that dense broadband seismic networks can provide a useful complementary dataset, in addition to tiltmeter arrays and other networks, to study or even monitor tsunami propagation using arrayed methods.


2012 ◽  
Vol 12 (3) ◽  
pp. 843-857 ◽  
Author(s):  
S. Tinti ◽  
L. Graziani ◽  
B. Brizuela ◽  
A. Maramai ◽  
S. Gallazzi

Abstract. After the 2004 Indian Ocean tsunami catastrophe, UNESCO through the IOC (Intergovernmental Oceanographic Commission) sponsored the establishment of Intergovernmental Coordination Groups (ICG) with the aim to devise and implement Tsunami Warning Systems (TWSs) in all the oceans exposed to tsunamis, in addition to the one already in operation in the Pacific (PTWS). In this context, since 2005, efforts have begun for the establishment of TWSs in the Indian Ocean (IOTWS), in the Caribbean area (CARIBE EWS) and in the North Eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS). In this paper, we focus on a specific tool that was first introduced in the PTWS routine operations, i.e., the Decision Matrix (DM). This is an easy-to-use table establishing a link between the main parameters of an earthquake and the possible ensuing tsunami in order to make quick decision on the type of alert bulletins that a Tsunami Warning Center launches to its recipients. In the process of implementation of a regional TWS for the NEAM area, two distinct DMs were recently proposed by the ICG/NEAMTWS, one for the Atlantic and the other for the entire Mediterranean area. This work applies the Mediterranean NEAMTWS DM to the earthquakes recorded in Italy and compares the action predicted by the DM vs. the action that should be appropriate in view of the observed tsunami characteristics with the aim to establish how good the performance of the Italian TWS will be when it uses the DM for future events. To this purpose, we make use of the parametric catalogue of the Italian earthquakes (CPTI04) compiled in 2004 and the most recent compilation of the Italian tsunami, based on the Italian Tsunami Catalogue of 2004 and the subsequent revisions. In order to better compare the TWS actions, we have identified four different kinds of action coding them from 0 to 3 according to the tsunami severity and have further considered three different distance ranges where these actions apply, that is local, regional and basin-wide, that refer to the distance of the message recipients from the tsunami source. The result of our analysis is that the actions prescribed by the DM are adequate only in 45%–55% of the cases, overestimations are about 37% and underestimations are the rest. As a whole, the predictive ability of the DM is not satisfactory, which implies that recipients have the difficult task in managing bulletins carrying a great deal of uncertainty and on the other hand also suggests that strategies to improve the DM or to go beyond the DM need to be found.


Sign in / Sign up

Export Citation Format

Share Document