Stability boundaries of a spinning rotor with parametrically excited gyroscopic system

2009 ◽  
Vol 28 (4) ◽  
pp. 891-896 ◽  
Author(s):  
Yong-Chen Pei
2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Ashu Sharma ◽  
S. C. Sinha

In most parametrically excited systems, stability boundaries cross each other at several points to form closed unstable subregions commonly known as “instability pockets.” The first aspect of this study explores some general characteristics of these instability pockets and their structural modifications in the parametric space as damping is induced in the system. Second, the possible destabilization of undamped systems due to addition of damping in parametrically excited systems has been investigated. The study is restricted to single degree-of-freedom systems that can be modeled by Hill and quasi-periodic (QP) Hill equations. Three typical cases of Hill equation, e.g., Mathieu, Meissner, and three-frequency Hill equations, are analyzed. State transition matrices of these equations are computed symbolically/analytically over a wide range of system parameters and instability pockets are observed in the stability diagrams of Meissner, three-frequency Hill, and QP Hill equations. Locations of the intersections of stability boundaries (commonly known as coexistence points) are determined using the property that two linearly independent solutions coexist at these intersections. For Meissner equation, with a square wave coefficient, analytical expressions are constructed to compute the number and locations of the instability pockets. In the second part of the study, the symbolic/analytic forms of state transition matrices are used to compute the minimum values of damping coefficients required for instability pockets to vanish from the parametric space. The phenomenon of destabilization due to damping, previously observed in systems with two degrees-of-freedom or higher, is also demonstrated in systems with one degree-of-freedom.


2003 ◽  
Vol 70 (4) ◽  
pp. 561-567
Author(s):  
G. M. L. Gladwell ◽  
M. M. Khonsari ◽  
Y. M. Ram

Depending on the speed of rotation, a gyroscopic system may lose or gain stability. The paper characterizes the critical angular velocities at which a conservative gyroscopic system may change from a stable to an unstable state, and vice versa, in terms of the eigenvalues of a high-order matrix pencil. A numerical method for evaluation of all possible candidates for such critical velocities is developed.


1991 ◽  
Vol 113 (2) ◽  
pp. 336-338 ◽  
Author(s):  
J. Lieh ◽  
I. Haque

This paper presents a study of the parametrically excited behavior of passenger and freight vehicles on tangent track due to harmonic variations in conicity using linear models. The effect of primary and secondary stiffnesses on parametric excitation is also studied. Floquet theory is used to find the stability boundaries. The results show that wavelengths associated with conicity variation that are in the vicinity of half the kinematic wavelengths of the vehicles can lead to significant reductions in critical speeds. Results also show that the primary and warp stiffnesses can affect the severity of principal parametric resonance depending on the vehicle models and magnitude of stiffnesses chosen.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-407 ◽  
Author(s):  
Anthony A. Renshaw

By taking advantage of modal decoupling and reduction of order, we derive a simplified procedure for applying the method of multiple scales to determine the stability boundaries of parametrically excited, gyroscopic systems. The analytic advantages of the procedure are illustrated with three examples.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


2003 ◽  
Vol 58 (2) ◽  
pp. 269-273 ◽  
Author(s):  
Toshiyuki Nakamura ◽  
Takashi Makino ◽  
Takeshi Sugahara ◽  
Kazunari Ohgaki

Sign in / Sign up

Export Citation Format

Share Document