scholarly journals A new model for calculating the transient displacement field within a linear elastic isotropic solid with a through hole under dynamic impact: A 3D model is developed and a 2D case study is examined

2017 ◽  
Vol 66 ◽  
pp. 269-278 ◽  
Author(s):  
Drew Mitchell ◽  
Jenn-Terng Gau
2012 ◽  
Vol 17 (4) ◽  
pp. 179-190
Author(s):  
Kacper Pluta ◽  
Marcin Janaszewski ◽  
Michał Postolski

Abstract The article presents new conception of 3D model of human bronchial tubes, which represents bronchial tubes extracted from CT images of the chest. The new algorithm which generates new model is an extension of the algorithm (basic algorithm) proposed by Hiroko Kitaoka, Ryuji Takaki and Bela Suki. The basic model has been extended by geometric deformations of branches and noise which occur in bronchial trees extracted from CT images. The article presents comparison of results obtained with the use of the new algorithm and the basic one. Moreover, the discussion of usefulness of generated new models for testing of algorithms for quantitative analysis of bronchial tubes based on CT images is also included.


Cities ◽  
2013 ◽  
Vol 31 ◽  
pp. 394-403 ◽  
Author(s):  
Elham Akhondzadeh-Noughabi ◽  
Somayeh Alizadeh ◽  
Ali-Mohammad Ahmadvand ◽  
Behrouz Minaei-Bidgoli

2018 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Cristian Lucas Endler ◽  
Pedro Paulo de Andrade Júnior

This article aims to propose a new model of technological innovations, as well as using it in a case study in the automotive industry. After an analysis of the main scientific databases, it was verified that the present work is unprecedented in presenting a unified model of identification and management of technological innovations. In methodological terms, the bibliometric and systemic analyzes were performed in order to identify the main technological innovations inherent in the automotive industry. In terms of research results, a cohesive innovation model was obtained, which, once based on the concepts of sensitive innovation and latent innovation, allows the identification and the consequent valuation of the economic potential of the main technological innovations in the area desired by the manager who will apply it. As an example, the model was applied specifically in the automotive sector, but its methodology can be generalized to any area of industrial production.


Author(s):  
L. Barazzetti ◽  
R. Brumana ◽  
D. Oreni ◽  
M. Previtali ◽  
F. Roncoroni

This paper presents a photogrammetric methodology for true-orthophoto generation with images acquired from UAV platforms. The method is an automated multistep workflow made up of three main parts: (i) image orientation through feature-based matching and collinearity equations / bundle block adjustment, (ii) dense matching with correlation techniques able to manage multiple images, and true-orthophoto mapping for 3D model texturing. It allows automated data processing of sparse blocks of convergent images in order to obtain a final true-orthophoto where problems such as self-occlusions, ghost effects, and multiple texture assignments are taken into consideration. <br><br> The different algorithms are illustrated and discussed along with a real case study concerning the UAV flight over the Basilica di Santa Maria di Collemaggio in L'Aquila (Italy). The final result is a rigorous true-orthophoto used to inspect the roof of the Basilica, which was seriously damaged by the earthquake in 2009.


2021 ◽  
Vol 2 (3) ◽  
pp. 74-98
Author(s):  
Peter Hugo Nelson

ABSTRACT Students develop and test simple kinetic models of the spread of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Microsoft Excel is used as the modeling platform because it is nonthreatening to students and it is widely available. Students develop finite difference models and implement them in the cells of preformatted spreadsheets following a guided inquiry pedagogy that introduces new model parameters in a scaffolded step-by-step manner. That approach allows students to investigate the implications of new model parameters in a systematic way. Students fit the resulting models to reported cases per day data for the United States using least squares techniques with Excel's Solver. Using their own spreadsheets, students discover for themselves that the initial exponential growth of COVID-19 can be explained by a simplified unlimited growth model and by the susceptible-infected-recovered (SIR) model. They also discover that the effects of social distancing can be modeled using a Gaussian transition function for the infection rate coefficient and that the summer surge was caused by prematurely relaxing social distancing and then reimposing stricter social distancing. Students then model the effect of vaccinations and validate the resulting susceptible-infected-recovered-vaccinated (SIRV) model by showing that it successfully predicts the reported cases per day data from Thanksgiving through the holiday period up to 14 February 2021. The same SIRV model is then extended and successfully fits the fourth peak up to 1 June 2021, caused by further relaxation of social distancing measures. Finally, students extend the model up to the present day (27 August 2021) and successfully account for the appearance of the delta variant of the SARS-CoV-2 virus. The fitted model also predicts that the delta variant peak will be comparatively short, and the cases per day data should begin to fall off in early September 2021, counter to current expectations. This case study makes an excellent capstone experience for students interested in scientific modeling.


Sign in / Sign up

Export Citation Format

Share Document