Brain morphometry of individuals with schizophrenia with and without antipsychotic medication – The Northern Finland Birth Cohort 1966 Study

2015 ◽  
Vol 30 (5) ◽  
pp. 598-605 ◽  
Author(s):  
J. Moilanen ◽  
S. Huhtaniska ◽  
M. Haapea ◽  
E. Jääskeläinen ◽  
J. Veijola ◽  
...  

AbstractBackgroundIn schizophrenia, brain morphometric changes may be associated with antipsychotic medication. Only limited data is available concerning individuals with schizophrenia without antipsychotic medication. We aimed to study the associations of: use versus no use of antipsychotic medication; length of continuous time without antipsychotic medication; cumulative dose of lifetime antipsychotic medication; and type of antipsychotic medication; with brain morphometry in schizophrenia after an average of 10 years of illness.MethodsData of 63 individuals with schizophrenia (mean duration of illness 10.4 years) from the Northern Finland Birth Cohort 1966 were gathered by interview and from hospital and outpatient records. Structural MRI data at age 34 years were acquired and grey matter volume maps with voxel-based morphometry were analyzed using FSL tools.ResultsOf the individuals studied, 15 (24%) had taken no antipsychotic medication during the previous year. Individuals with antipsychotic medication had lower total grey matter (TGM) volume compared with non-medicated subjects, although this association was not statistically significant (Cohen's d = –0.51, P = 0.078). Time without antipsychotic medication associated with increased TGM (P = 0.028). Longer time without antipsychotic medication associated with increased regional volume in right precentral gyrus and right middle frontal gyrus. There were no associations between cumulative dose of lifetime antipsychotic medication or type of antipsychotic medication and brain morphometry.ConclusionsUnlike some previous investigators, we found no association between cumulative dose of lifetime antipsychotic medication and brain morphological changes in this population-based sample. However, longer continuous time without antipsychotic medication preceding the MRI scan associated with increased gray matter volume.

2019 ◽  
Vol 99 (6) ◽  
pp. 287-294
Author(s):  
I. S. Bakulin ◽  
R. N. Konovalov ◽  
M. V. Krotenkova ◽  
N. A. Suponeva ◽  
M. N. Zakharova

Objective:to investigate changes in grey matter volume in patients with classical amyotrophic lateral sclerosis (ALS) and lower motor neuron syndrome (LMNS) with voxel-based morphometry (VBM).Material and methods. 30 patients with classical ALS, 22 patients with LMNS and 23 age and gender matched healthy controls were enrolled in this study. All participants underwent a T1MPR (multiplanar reconstruction) magnetic resonance imaging with post-processing included spatial normalization, segmentation and smoothing. VBM was used to investigate changes in grey matter volume across the groups.Results. There was a significant decrease in grey matter volume of middle part of left pre- and postcentral gyri, middle part of right precentral gyrus, right and left occipital lobes in patients with classical ALS compared to healthy subjects. There was no difference in grey matter volume between patients with LMNS and healthy controls. Patients with classical ALS showed a significant decrease in grey matter volume of middle part of left preand postcentral gyri, upper part of left precentral gyrus, middle and upper parts of right precentral gyrus, right and left occipital lobes compared to patients with LMNS. There was no significant correlation between grey matter volume and clinical findings in patients with ALS and LMNS.Conclusion.VBM reveals a decrease in grey matter volume of motor and nonmotor brain regions in patients with classical ALS, but not in patients with LMNS.


Author(s):  
William D. Hopkins ◽  
Cheryl D. Stimpson ◽  
Chet C. Sherwood

Bonobos and chimpanzees are two closely relates species of the genus Pan, yet they exhibit marked differences in anatomy, behaviour and cognition. For this reason, comparative studies on social behaviour, cognition and brain organization between these two species provide important insights into evolutionary models of human origins. This chapter summarizes studies on socio-communicative competencies and social cognition in chimpanzees and bonobos from the authors’ laboratory in comparison to previous reports. Additionally, recent data on species differences and similarities in brain organization in grey matter volume and distribution is presented. Some preliminary findings on microstructural brain organization such as neuropil space and cellular distribution in key neurotransmitters and neuropeptides involved in social behaviour and cognition is presented. Though these studies are in their infancy, the findings point to potentially important differences in brain organization that may underlie bonobo and chimpanzees’ differences in social behaviour, communication and cognition. Les bonobos et les chimpanzés sont deux espèces du genus Pan prochement liées, néanmoins ils montrent des différences anatomiques, comportementales et cognitives marquées. Pour cette raison, les études comparatives sur le comportement social, la cognition et l’organisation corticale entre ces deux espèces fournissent des idées sur les modèles évolutionnaires des origines humaines. Dans ce chapitre, nous résumons des études sur les compétences socio-communicatives et la cognition sociale chez les chimpanzés et les bonobos de notre laboratoire en comparaison avec des rapports précédents. En plus, nous présentons des données récentes sur les différences et similarités d’organisation corticale du volume et distribution de la matière grise entre espèces. Nous présentons plus de résultats préliminaires sur l’organisation corticale microstructurale comme l’espace neuropile et la division cellulaire dans des neurotransmetteurs clés et les neuropeptides impliqués dans le comportement social et la cognition. Bien que ces études sont dans leur enfance, les résultats montrent des différences d’organisation corticale importantes qui sont à la base des différences de comportement social, la communication et la cognition entre les bonobos et les chimpanzés.


2021 ◽  
pp. jnnp-2020-323541
Author(s):  
Jessica L Panman ◽  
Vikram Venkatraghavan ◽  
Emma L van der Ende ◽  
Rebecca M E Steketee ◽  
Lize C Jiskoot ◽  
...  

ObjectiveProgranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.MethodsWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.ResultsLanguage functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.ConclusionDegeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


2020 ◽  
Author(s):  
A. Buhrmann ◽  
A. M. A. Brands ◽  
J. van der Grond ◽  
C. Schilder ◽  
R. C. van der Mast ◽  
...  

2003 ◽  
Vol 341 (3) ◽  
pp. 173-176 ◽  
Author(s):  
L.J. Whalley ◽  
R.T. Staff ◽  
A.D. Murray ◽  
S.J. Duthie ◽  
A.R. Collins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document