scholarly journals In vivo phenotypic and molecular characterization of retinal degeneration in mouse models of three ciliopathies

2019 ◽  
Vol 186 ◽  
pp. 107721 ◽  
Author(s):  
Agnès Brun ◽  
Xiangxiang Yu ◽  
Cathy Obringer ◽  
Daniel Ajoy ◽  
Elodie Haser ◽  
...  
2010 ◽  
Vol 42 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Stephanie L. Pierce ◽  
William Kutschke ◽  
Rafael Cabeza ◽  
Sarah K. England

Transgenic and knockout mouse models have proven useful in the study of genes necessary for parturition—including genes that affect the timing and/or progression of labor contractions. However, taking full advantage of these models will require a detailed characterization of the contractile patterns in the mouse uterus. Currently the best methodology for this has been measurement of isometric tension in isolated muscle strips in vitro. However, this methodology does not provide a real-time measure of changes in uterine pressure over the course of pregnancy. Recent advances have opened the possibility of using radiotelemetric devices to more accurately and comprehensively study intrauterine pressure in vivo. We tested the effectiveness of this technology in the mouse, in both wild-type (WT) mice and a mouse model of defective parturition (SK3 channel-overexpressing mice), after surgical implant of telemetry transmitters into the uterine horn. Continuous recordings from day 18 of pregnancy through delivery revealed that WT mice typically deliver during the 12-h dark cycle after 19.5 days postcoitum. In these mice, intrauterine pressure gradually increases during this cycle, to threefold greater than that measured during the 12-h cycle before delivery. SK3-overexpressing mice, by contrast, exhibited lower intrauterine pressure over the same period. These results are consistent with the outcome of previous in vitro studies, and they indicate that telemetry is an accurate method for measuring uterine contraction, and hence parturition, in mice. The use of this technology will lead to important novel insights into changes in intrauterine pressure during the course of pregnancy.


2020 ◽  
Author(s):  
Tobias M. Franks ◽  
Sharie J. Haugabook ◽  
Elizabeth A. Ottinger ◽  
Meghan S. Vermillion ◽  
Kevin M. Pawlik ◽  
...  

AbstractMouse models of sickle cell disease (SCD) that faithfully switch from fetal to adult hemoglobin (Hb) have been important research tools that accelerated advancement towards treatments and cures for SCD. Red blood cells (RBCs) in these animals sickled in vivo, occluded small vessels in many organs and resulted in severe anemia like in human patients. SCD mouse models have been valuable in advancing clinical translation of some therapeutics and providing a better understanding of the pathophysiology of SCD. However, mouse models vary greatly from humans in their anatomy and physiology and therefore have limited application for certain translational efforts to transition from the bench to bedside. These differences create the need for a higher order animal model to continue the advancement of efforts in not only understanding relevant underlying pathophysiology, but also the translational aspects necessary for the development of better therapeutics to treat or cure SCD. Here we describe the development of a humanized porcine sickle cell model that like the SCD mice, expresses human ɑ-, β− and γ-globin genes under the control of the respective endogenous porcine locus control regions (LCR). We also describe our initial characterization of the SCD pigs and plans to make this model available to the broader research community.


2021 ◽  
Vol 9 (4) ◽  
pp. 55
Author(s):  
Joshua Mallen ◽  
Manisha Kalsan ◽  
Peyman Zarrineh ◽  
Laure Bridoux ◽  
Shandar Ahmad ◽  
...  

The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero–posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero–posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo.


1995 ◽  
Vol 35 (5) ◽  
pp. 423-431 ◽  
Author(s):  
Devasis Chatterjee ◽  
Chou Jui-Tsai Liu ◽  
David Northey ◽  
Beverly A. Teicher

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Alaaeldin Ahmed Hamza ◽  
Gehan Hussein Heeba ◽  
Hanan Mohamed Elwy ◽  
Chandraprabha Murali ◽  
Raafat El-Awady ◽  
...  

Toxicon ◽  
2019 ◽  
Vol 168 ◽  
pp. S21
Author(s):  
Eric Junqueira Brito Pereira ◽  
Dilza Trevisan Silva ◽  
Solange Maria De Toledo Serrano

2007 ◽  
Vol 405 (3) ◽  
pp. 489-494 ◽  
Author(s):  
Melinda A. Paterson ◽  
Anita J. Horvath ◽  
Robert N. Pike ◽  
Paul B. Coughlin

Centerin [SERPINA9/GCET1 (germinal centre B-cell-expressed transcript 1)] is a serpin (serine protease inhibitor) whose expression is restricted to germinal centre B-cells and lymphoid malignancies with germinal centre B-cell maturation. Expression of centerin, together with bcl-6 and GCET2, constitutes a germinal centre B-cell signature, which is associated with a good prognosis in diffuse large B-cell lymphomas, but the molecular basis for this remains to be elucidated. We report here the cloning, expression and molecular characterization of bacterial recombinant centerin. Biophysical studies demonstrated that centerin was able to undergo the ‘stressed to relaxed’ conformational change which is an absolute requirement for protease inhibitory activity. Kinetic analysis showed that centerin rapidly inhibited the serine protease trypsin (ka=1.9×105 M−1·s−1) and also demonstrated measurable inhibition of thrombin (ka=1.17×103 M−1·s−1) and plasmin (ka=1.92×103 M−1·s−1). Centerin also bound DNA and unfractionated heparin, although there was no functionally significant impact on the rate of inhibition. These results suggest that centerin is likely to function in vivo in the germinal centre as an efficient inhibitor of a trypsin-like protease.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233373
Author(s):  
Huei-Mei Chen ◽  
Rachel Resendes ◽  
Azita Ghodssi ◽  
Danielle Sookiasian ◽  
Michael Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document