scholarly journals Mechanosensitive channel inhibition attenuates TGFβ2-induced actin cytoskeletal remodeling and reactivity in mouse optic nerve head astrocytes

2021 ◽  
pp. 108791
Author(s):  
Alexander Kirschner ◽  
Ana N. Strat ◽  
John Yablonski ◽  
Hannah Yoo ◽  
Tyler Bagué ◽  
...  
2021 ◽  
Author(s):  
Alexander Kirschner ◽  
Ana N Strat ◽  
John Yablonski ◽  
Tyler Bague ◽  
Haiyan Li ◽  
...  

Astrocytes within the optic nerve head undergo actin cytoskeletal rearrangement early in glaucoma, which coincides with astrocyte reactivity and extracellular matrix (ECM) deposition. Elevated transforming growth factor beta 2 (TGFβ2) levels within astrocytes have been described in glaucoma, and TGFβ signaling induces actin cytoskeletal remodeling and ECM deposition in many tissues. A key mechanism by which astrocytes sense and respond to external stimuli is via mechanosensitive ion channels. Here, we tested the hypothesis that inhibition of mechanosensitive channels will attenuate TGFβ2-mediated optic nerve head astrocyte actin cytoskeletal remodeling, reactivity, and ECM deposition. Primary optic nerve head astrocytes were isolated from C57BL/6J mice and cell purity was confirmed by immunostaining. Astrocytes were treated with vehicle control, TGFβ2 (5 ng/ml), GsMTx4 (a mechanosensitive channel inhibitor; 500 nM), or TGFβ2 (5 ng/ml) + GsMTx4 (500 nM) for 48 h. FITC-phalloidin staining was used to assess the formation of f-actin stress fibers and to quantify the presence of crosslinked actin networks (CLANs). Cell reactivity was determined by immunostaining for GFAP. Levels of fibronectin deposition were also quantified. Primary optic nerve head astrocytes were positive for the astrocyte marker GFAP and negative for markers for microglia (Iba1) and oligodendrocytes (OSP1). Significantly increased %CLAN-positive cells were observed after 48-h treatment with TGFβ2 vs. control in a dose-dependent manner. Co-treatment with GsMTx4 significantly decreased %CLAN-positive cells vs. TGFβ2 treatment and the presence of f-actin stress fibers. TGFβ2 treatment significantly increased GFAP and fibronectin fluorescence intensity, which were decreased with GsMTx4 treatment. Our data suggest inhibition of mechanosensitive channel activity as a potential therapeutic strategy to modulate actin cytoskeletal remodeling within the optic nerve head in glaucoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Kyung Song ◽  
Joong Won Shin ◽  
Jin Yeong Lee ◽  
Ji Wook Hong ◽  
Michael S. Kook

AbstractThe presence of parapapillary choroidal microvasculature dropout (CMvD) may affect optic nerve head (ONH) perfusion in glaucoma patients, since parapapillary choroidal vessels provide vascular supply to the neighboring ONH. However, it remains to be determined whether the presence of parapapillary CMvD is associated with diminished perfusion in the nearby ONH. The present study investigated the spatial relationship between CMvD and ONH vessel density (ONH-VD) loss in open-angle glaucoma (OAG) eyes using optical coherence tomography angiography (OCT-A). This study included 48 OAG eyes with a single localized CMvD confined to the inferotemporal parapapillary sector and 48 OAG eyes without CMvD, matched for demographic and ocular characteristics. Global and regional ONH-VD values were compared between eyes with and without CMvD. The relationships between ONH-VD outcomes and clinical variables were assessed. ONH-VDs at the inferotemporal ONH sectors corresponding to the CMvD location were significantly lower in eyes with compared to those without CMvD. Multivariable linear regression analyses indicated that a lower inferotemporal ONH-VD was independently associated with CMvD presence and a greater CMvD angular extent (both P < 0.05). The localized presence of parapapillary CMvD in OAG eyes is significantly associated with ONH-VD loss in the neighboring ONH location, with a spatial correlation.


1985 ◽  
Vol 26 (1) ◽  
pp. 136-139
Author(s):  
H. H. Dietz ◽  
E. Eriksen ◽  
O. A. Jensen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Amorim-de-Sousa ◽  
Tim Schilling ◽  
Paulo Fernandes ◽  
Yeshwanth Seshadri ◽  
Hamed Bahmani ◽  
...  

AbstractUpregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.


Author(s):  
Babak Alipanahi ◽  
Farhad Hormozdiari ◽  
Babak Behsaz ◽  
Justin Cosentino ◽  
Zachary R. McCaw ◽  
...  

Author(s):  
Ivana Labounkova ◽  
Rene Labounek ◽  
Igor Nestrasil ◽  
Jan Odstrcilik ◽  
Ralf P. Tornow ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0238104 ◽  
Author(s):  
Sarah Quillen ◽  
Julie Schaub ◽  
Harry Quigley ◽  
Mary Pease ◽  
Arina Korneva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document