scholarly journals The impact of ageing on male reproductive success in Drosophila melanogaster

2018 ◽  
Vol 103 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Ruhmann ◽  
Mareike Koppik ◽  
Mariana F. Wolfner ◽  
Claudia Fricke
Reproduction ◽  
2019 ◽  
Vol 158 (6) ◽  
pp. R219-R229 ◽  
Author(s):  
Claudia Fricke ◽  
Mareike Koppik

Ageing is nearly ubiquitous and encompasses all biological functions. We here focus on age-dependent changes in male reproductive capacity across a broad range of animal taxa. While there has been a long-standing focus on mating ability and overall reproductive success, we here highlight the underlying mechanisms that explain loss in fertilisation capacity in ageing males. Fertilisation is mediated by not only the presence of sperm, but also the cocktail of seminal fluid proteins that ensure sperm survival, capacitation and interaction with female physiology. Sperm ageing has received much attention in studies of male reproductive senescence; however, post-mating processes include a number of interlocked steps that together cumulate in successful fertilisation. As such we consider male ability to elicit female post mating responses such as uterine conformational changes, sperm storage and ovulation and the components within the ejaculate that mediate these post-mating processes. For the latter seminal fluid proteins are key and hence we reflect on age-dependent changes in quality of the entire ejaculate and its consequences for male reproductive capacity. While first studies accrue and highlight that changes in the non-sperm fraction can explain substantial variation in senescent male reproductive success and male ability to induce post-mating responses necessary for fertilisation many open questions still remain that warrant further investigations. One being what the potential age-dependent changes in composition are or whether there is a general decline and how this interacts with sperm to affect fertilisation success. Further, the impact females might have to ameliorate these changes will be an area of interest.


2018 ◽  
Vol 14 (10) ◽  
pp. 20180474 ◽  
Author(s):  
David C. S. Filice ◽  
Tristan A. F. Long

In Drosophila melanogaster , males engage in both extensive pre- and post-copulatory competition for the opportunity to mate with females and subsequently sire offspring. The selection pressure for increased male reproductive success has resulted in the evolution of a wide diversity of sexual traits. However, despite strong selection, individuals often exhibit considerable phenotypic variation in the expression of these traits, and it is unclear if any of this variation is owing to underlying genetic trade-offs. Here, using hemiclonal flies, we examine how male reproductive success covaries with their ability to induce long-term stimulation of oogenesis and oviposition in their mates, and how this relationship may change over time. We found that males from hemiclone lines with phenotypes that were more successful in a short-term reproductive ‘scramble’ environment were less effective at stimulating long-term fecundity in females. Furthermore, we observed that males from hemiclone lines which showed the most improvement over a longer reproductive interaction period also tended to stimulate higher long-term fecundity in females. Together, these results indicate the presence of genetic trade-offs between different male reproductive traits and offer insights into the maintenance of their variation.


2021 ◽  
Author(s):  
Jake Galvin ◽  
Erica Larson ◽  
Sevan Yedigarian ◽  
Mohammad Rahman ◽  
Kirill Borziak ◽  
...  

Spermatozoal morphology is highly variable both among and within species and in ways that can significantly impact fertilization success. In Drosophila melanogaster, paternity success depends on sperm length of both competing males and length of the female's primary sperm storage organ. We found that genes upregulated in long sperm testes are enriched for lncRNAs and seminal fluid proteins (Sfps). Transferred in seminal fluid to the female during mating, Sfps are secreted by the male accessory glands (AG) and affect female remating rate, physiology, and behavior with concomitant advantages for male reproductive success. Despite being upregulated in long sperm testes, they have no known function in testis tissue. We found that Sex Peptide and ovulin (Acp26Aa) knockouts resulted in shorter sperm, suggesting that Sfps may regulate sperm length during spermatogenesis. However, knockout of AG function did not affect sperm length, suggesting that AG expression has no influence on spermatogenic processes. We also found that long sperm males are better able to delay female remating, suggesting higher Sfp expression in AG. These results might suggest that long sperm males have a double advantage in sperm competition by both delaying female remating, likely through transfer of more Sfps, and by resisting sperm displacement. However, we also found that this extra advantage does not necessarily translate to more progeny or higher paternity success. Thus, we found that multiple components of the ejaculate coordinate to promote male reproductive success at different stages of reproduction, but the realized fitness advantages in sperm competition are uncertain.


Behaviour ◽  
2015 ◽  
Vol 152 (7-8) ◽  
pp. 917-940 ◽  
Author(s):  
Devaleena S. Pradhan ◽  
Madelyne C. Willis ◽  
Tessa K. Solomon-Lane ◽  
Kevin Thonkulpitak ◽  
Matthew S. Grober

While males typically compete for females, species with female biased sex ratios and/or large male investment in offspring care often exhibit reversed sex roles. Here we investigated, in a haremic fish species, the bluebanded goby,Lythrypnus dalli, the impact of male and female courtship behaviour on male reproductive success, measured as the total number of eggs in the nest and total number of developed eggs. Reproductive success was not associated with rates of male behaviour, such as parenting, approaching and courtship, but was associated with rates of female courtship. Consistent with predictions for a role-reversed reproductive strategy, only males demonstrated nest care and females exhibited high rates of courtship and intrasexual competition, such that alpha females interrupted courtship solicitations by beta females. Overall, these data are consistent with sex role reversal inL. dalliand show that the expression of male courtship behaviour does not interfere with paternal care.


2012 ◽  
Vol 67 (4) ◽  
pp. 529-540 ◽  
Author(s):  
Clare C. Rittschof ◽  
Swetapadma Pattanaik ◽  
Laura Johnson ◽  
Luis F. Matos ◽  
Jérémie Brusini ◽  
...  

2009 ◽  
Vol 276 (1662) ◽  
pp. 1705-1711 ◽  
Author(s):  
Amanda Bretman ◽  
Claudia Fricke ◽  
Tracey Chapman

Evolutionary and plastic responses by males to the level of sperm competition (SC) are reported across widespread taxa, but direct tests of the consequences for male reproductive success in a competitive context are lacking. We varied male perception of SC to examine the effect on male competitive reproductive success and to test whether the outcomes were as predicted by theory. Exposure to rival males prior to mating increased a male's ejaculate investment (measured as mating duration); by contrast, exposure to rival males in the mating arena decreased mating duration. The results therefore suggested that SC intensity is important in shaping male responses to SC in this system, although the patterns were not strictly in accord with existing theory. We then tested whether males that responded to the level of SC had higher reproductive fitness in a competitive context. We found that males kept with rivals prior to mating again mated for longer; furthermore, they achieved significantly higher paternity share regardless of whether they were the first or second males to mate with a female. The plastic strategies employed by males therefore resulted in significantly increased reproductive success in a competitive context, even following subsequent rematings in which the majority of sperm were displaced.


Author(s):  
Gus Mills ◽  
Margaret Mills

This book demonstrates how cheetahs are adapted to arid savannahs like the southern Kalahari, and makes comparisons with other areas, especially the Serengeti. Topics dealt with are: demography and genetic status; feeding ecology, i.e. methods used for studying diet, diets of different demographic groups, individual diet specializations of females, prey selection, the impact of cheetah predation on prey populations, activity regimes and distances travelled per day, hunting behaviour, foraging success and energetics; interspecific competition; spatial ecology; reproductive success and the mating system; and conservation. The major findings show that cheetahs are well adapted to arid ecosystems and are water independent. Cheetah density in the study area was stable at 0.7/100 km2 and the population was genetically diverse. Important prey were steenbok and springbok for females with cubs, gemsbok, and adult ostrich for coalition males, and steenbok, springhares, and hares for single animals. Cheetahs had a density-dependent regulatory effect on steenbok and springbok populations. Females with large cubs had the highest overall food intake. Cheetahs, especially males, were often active at night, and competition with other large carnivores, both by exploitation and interference, was slight. Although predation on small cubs was severe, cub survival to adolescence was six times higher than in the Serengeti. There was no difference in reproductive success between single and coalition males. The conservation priority for cheetahs should be to maintain protected areas over a spectrum of landscapes to allow ecological processes, of which the cheetah is an integral part, to proceed unhindered.


2020 ◽  
Vol 6 (38) ◽  
pp. eaaz5746
Author(s):  
Catherine Crockford ◽  
Liran Samuni ◽  
Linda Vigilant ◽  
Roman M. Wittig

Humans are unusual among animals for continuing to provision and care for their offspring until adulthood. This “prolonged dependency” is considered key for the evolution of other notable human traits, such as large brains, complex societies, and extended postreproductive lifespans. Prolonged dependency must therefore have evolved under conditions in which reproductive success is gained with parental investment and diminished with early parental loss. We tested this idea using data from wild chimpanzees, which have similarly extended immature years as humans and prolonged mother-offspring associations. Males who lost their mothers after weaning but before maturity began reproducing later and had lower average reproductive success. Thus, persistent mother-immature son associations seem vital for enhancing male reproductive success, although mothers barely provision sons after weaning. We posit that these associations lead to social gains, crucial for successful reproduction in complex social societies, and offer insights into the evolution of prolonged dependency.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


Sign in / Sign up

Export Citation Format

Share Document