Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells

2004 ◽  
Vol 32 (6) ◽  
pp. 571-578 ◽  
Author(s):  
Teruyuki Kajiume ◽  
Yuichi Ninomiya ◽  
Hiroto Ishihara ◽  
Rieko Kanno ◽  
Masamoto Kanno
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2337-2337
Author(s):  
Takao Sudo ◽  
Takafumi Yokota ◽  
Tatsuki Sugiyama ◽  
Tatsuro Ishida ◽  
Yusuke Satoh ◽  
...  

Abstract Abstract 2337 Although hematopoietic stem cells (HSC) are characterized with self-renewal and pluri-potential, their cell-cycle status and differentiating behavior do fluctuate according to the physiological requirement. In the homeostatic state of adult bone marrow (BM), HSC are likely to be quiescent so that they can evade exhaustion or mutation. However, when BM is injured by irradiation and/or anti-cancer drugs, HSC need to proliferate to restore normal hematopoiesis. Then, after re-establishment of homeostasis, activated HSC return to be quiescent. Molecular crosstalk between HSC and BM microenvironment is thought to elaborately control the status of HSC, but precise mechanisms remain unknown. If the conversion of HSC between dormancy and self-renewal could be accurately monitored, the method should be useful to understand how the HSC status is regulated. Our previous study demonstrated that endothelial cell-selective adhesion molecule (ESAM) is a useful marker for murine HSC throughout life. In the present study, we examined if the ESAM level reflects the HSC status between dormancy and activation. Firstly we monitored ESAM levels of the Lin− Sca1+ c-kit+ (LSK) HSC-enriched fraction in BM after a single 5-FU injection (150 mg/kg) by flow cytometry. From 2 to 9 days after the 5-FU injection, ESAM levels on the LSK fraction remarkably increased. Indeed, the mean fluorescence intensity of ESAM expression on HSC increased by 9.6-fold in 5 days after 5-FU injection. The increase of ESAM expression was more drastic than that of other endothelial-related markers such as CD34 (1.6-fold). After reaching to the maximum peak around day 5–6, ESAM level gradually decreased and returned to the homeostatic level by 12 days after 5-FU. Interestingly, the ESAM up-regulation on HSC was abrogated when inhibitory drugs for NF-kB and topoisomerase-II were given after 5-FU injection. Furthermore, short-term BrdU exposure proved that the ESAMhi cells after 5-FU treatment are actually active in the cell cycle status. Then, the immuno-histochemical analyses were performed to locate the activated HSC in 5-FU treated BM. Since more than 80% of the Lin− ESAMhi Sca1+ cells were found within 20 μm from vascular endothelium, the activated HSC seemed to be intimate with endothelial cells and/or vascular-related cells. Next, we performed functional assessments of the ESAMlow LSK and ESAMhi LSK fractions sorted from 5-FU-treated BM. In methylcellulose cultures, while both fractions contained a number of hematopoietic progenitors, CFU-Mix, primitive multipotent progenitors, were significantly enriched in the ESAMhi fraction (10±0 vs. 48.5±2.1 per 200 ESAMlow or ESAMhi LSK cells, respectively). In the in vivo long-term reconstitution assays, we transplanted 2,000 CD45.1+ ESAMlow or ESAMhi LSK cells with 2 × 105 CD45.2+ competitor BM cells into lethally irradiated CD45.2+ mice. Sixteen weeks after transplantation, the mice transplanted with ESAMhi LSK cells showed significantly higher chimerisms of CD45.1+ cells than those transplanted with ESAMlow LSK, suggesting that long-term HSC are enriched in the ESAMhi fraction. It is noteworthy that the ESAMhi CD45.1+ LSK fraction re-constituted a CD45.1+ LSK population in the CD45.2+ recipient BM, whose ESAM expression levels lowered to the homeostatic level. The results above suggested that ESAM expression level mirrors the activation status of HSC after BM injury. However, it remains unclear if ESAM plays an important role in the hematopoietic recovery. Although we did not observe significant phenotypes except slight anemia in homeostatic ESAM KO mice, we presumed that substantial BM stress might reveal physiological importance of the ESAM expression. At day 5 after injecting 200mg/kg 5-FU, we found that leukocytes and platelet were remarkably decreased in KO mice. Furthermore, the KO mice showed severe anemia (Hb; WT 10.4±1.1 g/dl vs. KO 6.0±1.7 g/dl at day 10), and two of five mice died at day 12. In addition, we observed LSK Flt3− HSC as well as total mononuclear cells more significantly decreased in the KO mice. In summary, our data have shown that ESAM serves as a strong tool to monitor the conversion between dormancy and proliferation of adult BM HSC. In addition, the data from ESAM KO mice have suggested that ESAM is indispensable for normal hematopoietic recovery after BM injury. Further studies should address physiological meanings of the high ESAM level on active HSC. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 88 ◽  
pp. S58
Author(s):  
Mohamed Eldeeb ◽  
Jonas Ungerbäck ◽  
Mikael Sigvardsson ◽  
David Bryder

2018 ◽  
Vol 495 (1) ◽  
pp. 1129-1135 ◽  
Author(s):  
Hui Peng ◽  
Atsuo Kasada ◽  
Masaya Ueno ◽  
Takayuki Hoshii ◽  
Yuko Tadokoro ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1799-1799
Author(s):  
Ingmar Bruns ◽  
Sebastian Büst ◽  
Akos G. Czibere ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
...  

Abstract Abstract 1799 Poster Board I-825 Multiple myeloma (MM) patients often present with anemia at the time of initial diagnosis. This has so far only attributed to a physically marrow suppression by the invading malignant plasma cells and the overexpression of Fas-L and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by malignant plasma cells triggering the death of immature erythroblasts. Still the impact of MM on hematopoietic stem cells and their niches is scarcely established. In this study we analyzed highly purified CD34+ hematopoietic stem and progenitor cell subsets from the bone marrow of newly diagnosed MM patients in comparison to normal donors. Quantitative flowcytometric analyses revealed a significant reduction of the megakaryocyte-erythrocyte progenitor (MEP) proportion in MM patients, whereas the percentage of granulocyte-macrophage progenitors (GMP) was significantly increased. Proportions of hematopoietic stem cells (HSC) and myeloid progenitors (CMP) were not significantly altered. We then asked if this is also reflected by clonogenic assays and found a significantly decreased percentage of erythroid precursors (BFU-E and CFU-E). Using Affymetrix HU133 2.0 gene arrays, we compared the gene expression signatures of stem cells and progenitor subsets in MM patients and healthy donors. The most striking findings so far reflect reduced adhesive and migratory potential, impaired self-renewal capacity and disturbed B-cell development in HSC whereas the MEP expression profile reflects decreased in cell cycle activity and enhanced apoptosis. In line we found a decreased expression of the adhesion molecule CD44 and a reduced actin polymerization in MM HSC by immunofluorescence analysis. Accordingly, in vitro adhesion and transwell migration assays showed reduced adhesive and migratory capacities. The impaired self-renewal capacity of MM HSC was functionally corroborated by a significantly decreased long-term culture initiating cell (LTC-IC) frequency in long term culture assays. Cell cycle analyses revealed a significantly larger proportion of MM MEP in G0-phase of the cell cycle. Furthermore, the proportion of apoptotic cells in MM MEP determined by the content of cleaved caspase 3 was increased as compared to MEP from healthy donors. Taken together, our findings indicate an impact of MM on the molecular phenotype and functional properties of stem and progenitor cells. Anemia in MM seems at least partially to originate already at the stem and progenitor level. Disclosures Off Label Use: AML with multikinase inhibitor sorafenib, which is approved by EMEA + FDA for renal cell carcinoma.


1993 ◽  
Vol 122 (4) ◽  
pp. 897-902 ◽  
Author(s):  
WH Fleming ◽  
EJ Alpern ◽  
N Uchida ◽  
K Ikuta ◽  
GJ Spangrude ◽  
...  

Hematopoietic stem cells (HSCs) are characterized by their ability to differentiate into all hematopoietic cell lineages while retaining their capacity for self renewal. One of the predictions of this model is the existence of a heterogeneous pool of HSCs, some members of which are destined to become lineage restricted progenitor cells while others function to renew the stem cell pool. To test whether HSCs are heterogeneous with respect to cell cycle status, we determined the fraction of phenotypically defined murine HSCs (Thy1.1lo Lin-/lo Sca-1+) that contain > 2n amount of DNA as measured by propidium iodide staining, Hoechst dye uptake and [3H]thymidine labeling; that fraction is 18-22%. In contrast, in the developing fetal liver, 40% of HSCs are in the S/G2/M phases of the cell cycle. Those HSCs which exhibit a low level of staining with rhodamine 123 are almost exclusively in G0/G1 (97%) whereas only 70% of HSCs which stain brightly for rhodamine 123 are in G0/G1. The injection of 100 G0/G1 HSCs rescued 90% of lethally irradiated mice in contrast to 100 S/G2/M HSCs, which protected only 25% of lethally irradiated recipients. Enhanced long-term donor-derived multilineage reconstitution of the peripheral blood was observed in recipients of 100 G0/G1 HSCs compared to recipients of 100 S/G2/M cells. These data indicate that a significant proportion of HSCs are actively proliferating during steady state hematopoiesis and that this subpopulation of cells exhibits reduced stem cell activity.


Stem Cells ◽  
2014 ◽  
Vol 32 (6) ◽  
pp. 1591-1601 ◽  
Author(s):  
Flor M. Perez-Campo ◽  
Guilherme Costa ◽  
Michael Lie-a-Ling ◽  
Stefano Stifani ◽  
Valerie Kouskoff ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3704-3704
Author(s):  
Aldona A Karaczyn ◽  
Edward Jachimowicz ◽  
Jaspreet S Kohli ◽  
Pradeep Sathyanarayana

The preservation of hematopoietic stem cell pool in bone marrow (BM) is crucial for sustained hematopoiesis in adults. Studies assessing adult hematopoietic stem cells functionality had been shown that for example loss of quiescence impairs hematopoietic stem cells maintenance. Although, miR-199b is frequently down-regulated in acute myeloid leukemia, its role in hematopoietic stem cells quiescence, self-renewal and differentiation is poorly understood. Our laboratory investigated the role of miR-199b in hematopoietic stem and progenitor cells (HSPCs) fate using miR-199b-5p global deletion mouse model. Characterization of miR-199b expression pattern among normal HSPC populations revealed that miR-199b is enriched in LT-HSCs and reduced upon myeloablative stress, suggesting its role in HSCs maintenance. Indeed, our results reveal that loss of miR-199b-5p results in imbalance between long-term hematopoietic stem cells (LT-HSCs), short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MMPs) pool. We found that during homeostasis, miR-199b-null HSCs have reduced capacity to maintain quiescent state and exhibit cell-cycle deregulation. Cell cycle analyses showed that attenuation of miR-199b controls HSCs pool, causing defects in G1-S transition of cell cycle, without significant changes in apoptosis. This might be due to increased differentiation of LT-HSCs into MPPs. Indeed, cell differentiation assay in vitro showed that FACS-sorted LT-HSCs (LineagenegSca1posc-Kitpos CD48neg CD150pos) lacking miR-199b have increased differentiation potential into MPP in the presence of early cytokines. In addition, differentiation assays in vitro in FACS-sorted LSK population of 52 weeks old miR-199b KO mice revealed that loss of miR-199b promotes accumulation of GMP-like progenitors but decreases lymphoid differentiation, suggesting that miR199b may regulate age-related pathway. We used non-competitive repopulation studies to show that overall BM donor cellularity was markedly elevated in the absence of miR-199b among HSPCs, committed progenitors and mature myeloid but not lymphoid cell compartments. This may suggest that miR-199b-null LT-HSC render enhanced self-renewal capacity upon regeneration demand yet promoting myeloid reconstitution. Moreover, when we challenged the self-renewal potential of miR-199b-null LT-HSC by a secondary BM transplantation of unfractionated BM cells from primary recipients into secondary hosts, changes in PB reconstitution were dramatic. Gating for HSPCs populations in the BM of secondary recipients in 24 weeks after BMT revealed that levels of LT-HSC were similar between recipients reconstituted with wild-type and miR-199b-KO chimeras, whereas miR-199b-null HSCs contributed relatively more into MPPs. Our data identify that attenuation of miR-199b leads to loss of quiescence and premature differentiation of HSCs. These findings indicate that loss of miR-199b promotes signals that govern differentiation of LT-HSC to MPP leading to accumulation of highly proliferative progenitors during long-term reconstitution. Hematopoietic regeneration via repopulation studies also revealed that miR-199b-deficient HSPCs have a lineage skewing potential toward myeloid lineage or clonal myeloid bias, a hallmark of aging HSCs, implicating a regulatory role for miR-199b in hematopoietic aging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1349-1349
Author(s):  
Emmanuelle Passegue ◽  
Amy J. Wagers ◽  
Sylvie Giuriato ◽  
Wade C. Anderson ◽  
Irving L. Weissman

Abstract The blood is a perpetually renewing tissue seeded by a rare population of adult bone marrow hematopoietic stem cells (HSC). During steady-state hematopoiesis, the HSC population is relatively quiescent but constantly maintains a low numbers of cycling cells that differentiate to produce the various lineage of mature blood cells. However, in response to hematological stress, the entire HSC population can be recruited into cycle to self-renew and regenerate the blood-forming system. HSC proliferation is therefore highly adaptative and requires appropriate regulation of cell cycle progression to drive both differentiation-associated and self-renewal-associated proliferation, without depletion of the stem cell pool. Although the molecular events controlling HSC proliferation are still poorly understood, they are likely determined, at least in part, by regulated expression and/or function of components and regulators of the cell cycle machinery. Here, we demonstrate that the long-term self-renewing HSC (defined as Lin−/c-Kit+/Sca-1+/Thy1.1int/Flk2−) exists in two distinct states that are both equally important for their in vivo functions as stem cells: a numerically dominant quiescent state, which is critical for HSC function in hematopoietic reconstitution; and a proliferative state, which represents almost a fourth of this population and is essential for HSC functions in differentiation and self-renewal. We show that when HSC exit quiescence and enter G1 as a prelude to cell division, at least two critical events occur: first, during the G1 and subsequent S-G2/M phases, they temporarily lose efficient in vivo engraftment activity, while retaining in vitro differentiation potential; and second, they select the particular cell cycle proteins that are associated with specific developmental outcomes (self-renewal vs. differentiation) and developmental fates (myeloid vs. lymphoid). Together, these findings provide a direct link between HSC proliferation, cell cycle regulation and cell fate decisions that have critical implications for both the therapeutic use of HSC and the understanding of leukemic transformation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2353-2353
Author(s):  
Baiba Vilne ◽  
Rouzanna Istvanffy ◽  
Christina Eckl ◽  
Franziska Bock ◽  
Olivia Prazeres da Costa ◽  
...  

Abstract Abstract 2353 Hematopoiesis is maintained throughout life by the constant production of mature blood cells from hematopoietic stem cells (HSC). One mechanism by which the number of HSC is maintained is self-renewal, a cell division in which at least one of the daughter cells is a cell with the same functional potential as the mother cell. The mechanisms of this process are largely unknown. We have described cell lines that maintain self-renewal in culture. To study possible mechanisms and mediators involved in self-renewal, we performed co-cultures of HSC model cells: Lineage-negative Sca-1+ c-Kit+ (LSK) cells and HSC maintaining UG26–1B6 stromal cells. Microarray analyses were performed on cells prior to co-culture and cells sorted from the cultures. STEM clustering analysis of the data revealed that most changes in gene expression were due to early cell activation. Functional enrichment analysis revealed dynamic changes in focal adhesion and mTOR signaling, as well as changes in epigenetic regulators, such as HDAC in stromal cells. In LSK cells, genes whose products are involved in inflammation, Oxygen homeostasis and metabolism were differentially expressed after the co-culture. In addition, genes involved in the regulaton of H3K27 methylation were also affected. Interestingly, connective tissue growth factor (CTGF), which is involved in TGF-b, BMP and Wnt signaling, was upregulated in both stromal and LSK cells in the first day of co-culture. To study a possible extrinsic role of CTGF as a stromal mediator, we co-cultured siCTGF knockdown stromal cells with wild-type LSK cells. Since self-renewal requires cell division, we focused on cell cycle regulation of LSK cells. We found that knockdown of CTGF in stromal cells downregulates CTGF in LSK cells. In addition, knockdown of stromal CTGF downregulated Ccnd1, Cdk2, Cdkn1a (p21), Ep300 and Fos. On the other hand, decreased CTGF in stromal cells upregulates Cdkn1b (p27) and phosphorylation of Smad2/3. These results show that stromal CTGF regulates the cell cycle of LSK cells. On a functional level, we found that decreased stromal CTGF results in an increased production of MPP and myeloid colony-forming cells in 1-week co-cultures. We will present data showing whether and how a decrease in CTGF in stromal cells affects the maintenance of transplantable HSC. In summary, our current results indicate that reduced expression of CTGF in stromal cells regulates mediators of cell cycle and Smad2/3-mediated signaling in LSK cells, resulting in an increased production of myeloid progenitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2444-2444
Author(s):  
Il-Hoan Oh ◽  
Kim Tae-Min ◽  
Jae-Seung Shim

Abstract Multiple transcription factors (TFs) that regulate the self-renewal/stem cell state of hematopoietic stem cells (HSCs) have been identified, but understanding the molecular interplay of these TFs for their functional coordination remains a challenging issue. In this study, we investigated the functional integration and transcriptional coordination of STAT3 and HoxB4, which are TFs known to have similar effects on the self-renewal of HSCs. We found that while STAT3 (STAT3-C) or HoxB4 similarly enhanced the in vitro self-renewal and in vivo repopulating activities of HSCs, simultaneous transduction of both STAT3-C and HoxB4 did not have any additive enhancing effects. In contrast, the overexpression of HoxB4 caused a ligand-independent Tyr-phosphorylation in STAT3, and the inhibition of the STAT3 activity in HoxB4-overexpressing bone marrow cells significantly abrogated the enhancing effects of HoxB4 on both the bone marrow repopulation and maintenance of the undifferentiated state, revealing a molecular integration of these two TFs for HSC self-renewal. Expression microarray analysis revealed a significant overlap of the transcriptomes regulated by STAT3 and HoxB4 in undifferentiated hematopoietic cells. Moreover, a gene set enrichment analysis (GSEA) for TFs that can recapitulate the transcriptional changes induced by HoxB4 or STAT3 showed significant overlap in the candidate TFs. Interestingly, among these identified TFs were the puripotency-related genes, Oct-4 and Nanog. These results indicate the functional integration of tissue-specific TFs for HSC self-renewal and provide insights into the functional convergence of various TFs towards a conserved transcription program for the stem cell state. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document