Osteopontin expression in activated glial cells following mechanical- or toxin-induced nigral dopaminergic cell loss

2007 ◽  
Vol 207 (1) ◽  
pp. 95-106 ◽  
Author(s):  
J ICZKIEWICZ ◽  
S ROSE ◽  
P JENNER
Author(s):  
Anand Tekriwal ◽  
Mario J. Lintz ◽  
John A Thompson ◽  
Gidon Felsen

Parkinsonian motor deficits are associated with elevated inhibitory output from the basal ganglia (BG). However, several features of Parkinson's disease (PD) have not been accounted for by this simple "classical rate model" framework, including the observation in PD patients that movements guided by external stimuli are less impaired than otherwise-identical movements generated based on internal goals. Is this difference due to divergent processing within the BG itself, or to the recruitment of extra-BG pathways by sensory processing? In addition, surprisingly little is known about precisely when, in the sequence from selecting to executing movements, BG output is altered by PD. Here, we address these questions by recording activity in the SNr, a key BG output nucleus, in hemiparkinsonian mice performing a well-controlled behavioral task requiring stimulus-guided and internally-specified directional movements. We found that hemiparkinsonian mice exhibited a bias ipsilateral to the side of dopaminergic cell loss that was stronger when movements were internally specified rather than stimulus guided, consistent with clinical observations in parkinsonian patients. We further found that changes in parkinsonian SNr activity during movement preparation were consistent with the ipsilateral behavioral bias, as well as its greater magnitude for internally-specified movements. While these findings are inconsistent with some aspects of the classical rate model, they are accounted for by a related "directional rate model" positing that SNr output phasically over-inhibits motor output in a direction-specific manner. These results suggest that parkinsonian changes in BG output underlying movement preparation contribute to the greater deficit in internally-specified than stimulus-guided movements.


2016 ◽  
Vol 15 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Meghan G. Thomas ◽  
Caitlyn Welch ◽  
Leah Stone ◽  
Peter Allan ◽  
Roger A. Barker ◽  
...  

2019 ◽  
Vol 127 (5) ◽  
pp. 821-829 ◽  
Author(s):  
András Salamon ◽  
Dénes Zádori ◽  
László Szpisjak ◽  
Péter Klivényi ◽  
László Vécsei

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Behind the symptoms there is a complex pathological mechanism which leads to a dopaminergic cell loss in the substantia nigra pars compacta. Despite the strong efforts, curative treatment has not been found yet. To prevent a further cell death, numerous molecules were tested in terms of neuroprotection in preclinical (in vitro, in vivo) and in clinical studies as well. The aim of this review article is to summarize our knowledge about the extensively tested neuroprotective agents (Search period: 1991–2019). We detail the underlying pathological mechanism and summarize the most important results of the completed animal and clinical trials. Although many positive results have been reported in the literature, there is still no evidence that any of them should be used in clinical practice (Cochrane analysis was performed). Therefore, further studies are needed to better understand the pathomechanism of PD and to find the optimal neuroprotective agent(s).


2017 ◽  
Vol 114 (5) ◽  
pp. 1183-1188 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Li He ◽  
...  

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson’s disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L’s neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


2020 ◽  
Author(s):  
Anand Tekriwal ◽  
Mario J. Lintz ◽  
John A. Thompson ◽  
Gidon Felsen

AbstractParkinsonian motor deficits are associated with elevated inhibitory output from the basal ganglia (BG). However, several features of Parkinson’s disease (PD) have not been accounted for by this simple “rate model” framework, including the observation in PD patients that movements guided by external stimuli are less impaired than otherwise-identical movements generated based on internal goals. Is this difference in impairment due to divergent processing within the BG itself, or to the recruitment of extra-BG pathways by sensory processing? In addition, surprisingly little is known about precisely when, in the sequence from selecting to executing movements, BG output is altered by PD. Here, we address these questions by recording activity in the SNr, a key BG output nucleus, in hemiparkinsonian (hemi-PD) mice performing a well-controlled behavioral task requiring stimulus-guided and internally-specified directional movements. We found that hemi-PD mice exhibited a bias ipsilateral to the side of dopaminergic cell loss that was stronger when movements were internally specified rather than stimulus guided, consistent with clinical observations in parkinsonian patients. We further found that changes in parkinsonian SNr activity during movement preparation could account for the ipsilateral behavioral bias, as well as its greater magnitude for internally-specified movements, consistent with some aspects of the rate model. These results suggest that parkinsonian changes in BG output underlying movement preparation contribute to the greater deficit in internally-specified than stimulus-guided movements.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2019 ◽  
Vol 126 (11) ◽  
pp. 1471-1478 ◽  
Author(s):  
Dareia S. Roos ◽  
Jos W. R. Twisk ◽  
Pieter G. H. M. Raijmakers ◽  
Richard L. Doty ◽  
Henk W. Berendse

Abstract The aim of this study was to evaluate the relationship of hyposmia in Parkinson’s disease (PD) with other motor and non-motor symptoms and with the degree of nigrostriatal dopaminergic cell loss. A total of 295 patients with a diagnosis of PD were included. Olfactory function was measured using the University of Pennsylvania Smell Identification Test (UPSIT). Motor symptoms were rated using the Unified Parkinson’s Disease Rating Scale motor subscale (UPDRS III). To evaluate other non-motor symptoms, we used the Mini-Mental State Examination (MMSE) as a measure of global cognitive function and validated questionnaires to assess sleep disturbances, psychiatric symptoms, and autonomic dysfunction. A linear regression model was used to calculate correlation coefficients between UPSIT score and motor and non-motor variables [for psychiatric symptoms a Poisson regression was performed]. In a subgroup of patients (n = 155) with a dopamine transporter (DaT) SPECT scan, a similar statistical analysis was performed, now including striatal DaT binding. In the regression models with correction for age, sex, disease duration, and multiple testing, all motor and non-motor symptoms were associated with UPSIT scores. In the subgroup of patients with a DaT-SPECT scan, there was a strong association between olfactory test scores and DaT binding in both putamen and caudate nucleus. Hyposmia in PD is associated with various motor and non-motor symptoms, like cognition, depression, anxiety, autonomic dysfunction and sleep disturbances, and with the degree of nigrostriatal dopaminergic cell loss. This finding adds further confirmation that hyposmia holds significant promise as a marker of disease progression.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 381 ◽  
Author(s):  
O’Brien ◽  
Austin

Photobiomodulation (PBM) provides neuroprotection against dopaminergic cell death and associated motor deficits in rodent and primate models of Parkinson’s disease (PD). However, it has not yet been tested in the lipopolysaccharide (LPS) model of PD, which leads to dopaminergic cell death through microglia-evoked neuroinflammation. We investigated whether transcranial PBM could protect against dopaminergic cell death within the substantia nigra in male Sprague–Dawley rats following supranigral LPS injection. PBM fully protected rats from 10 µg LPS which would have otherwise caused 15% cell loss, but there was no significant neuroprotection at a 20 µg dose that led to a 50% lesion. Cell loss at this dose varied according to the precise site of injection and correlated with increased local numbers of highly inflammatory amoeboid microglia. Twenty microgram LPS caused motor deficits in the cylinder, adjusted stepping and rotarod tests that correlated with dopaminergic cell loss. While PBM caused no significant improvement at the group level, motor performance on all three tests no longer correlated with the lesion size caused by 20 µg LPS in PBM-treated rats, suggesting extranigral motor improvements in some animals. These results provide support for PBM as a successful neuroprotective therapy against the inflammatory component of early PD, provided inflammation has not reached a devastating level, as well as potential benefits in other motor circuitries.


Sign in / Sign up

Export Citation Format

Share Document