scholarly journals α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation

2017 ◽  
Vol 114 (5) ◽  
pp. 1183-1188 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Li He ◽  
...  

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson’s disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L’s neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.

2019 ◽  
Vol 19 (5) ◽  
Author(s):  
Cláudia Figueiredo-Pereira ◽  
Regina Menezes ◽  
Sofia Ferreira ◽  
Cláudia N Santos ◽  
Helena L A Vieira

ABSTRACT Autophagy is an autodigestive process, promoting cytoprotection by the elimination of dysfunctional organelles, misfolded proteins and toxic aggregates. Carbon monoxide (CO) is an endogenous gasotransmitter that under low concentrations prevents cell death and inflammation. For the first time, the role of autophagy in CO-mediated cytoprotection against oxidative stress was evaluated in the model yeast Saccharomyces cerevisiae. The boron-based CO-releasing molecule, CORM-A1, was used to deliver CO. CORM-A1 partially prevented oxidative stress-induced cell death in yeast. Likewise, CORM-A1 activated autophagy under basal physiological conditions, which were assessed by autophagic flux and the expression of mCherry-Atg8 or GFP-Atg8. Inhibition of autophagy by knocking out key autophagic genes in yeast (ATG8 or ATG11) blocked CORM-A1 cytoprotective effect, indicating the critical role of autophagy in CO-induced cytoprotection. The CO-mediated cytoprotection via autophagy induction observed in yeast was validated in primary cultures of astrocytes, a well-characterized model for CO's cytoprotective functions. As in yeast, CORM-A1 prevented oxidative stress-induced cell death in an autophagy-dependent manner in astrocytes. Overall, our data support the cytoprotective action of CO against oxidative stress. CO promotes cytoprotection in yeast via autophagy, opening new possibilities for the study of molecular mechanisms of CO's biological functions using this powerful eukaryotic model.


Biology Open ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. bio052662
Author(s):  
Zhen Yu ◽  
Natalia I. Dmitrieva ◽  
Avram D. Walts ◽  
Hui Jin ◽  
Yangtengyu Liu ◽  
...  

ABSTRACTHuman induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety. Here, we find that dominant negative mutations in STAT3 in patients with autosomal-dominant hyper IgE (Job's) syndrome (AD-HIES) result in greatly reduced reprograming efficiency of primary skin fibroblasts derived from skin biopsies. Analysis of normal skin fibroblasts revealed upregulation and phosphorylation of endogenous signal transducer and activator of transcription 3 (STAT3) and its binding to the NANOG promoter following transduction with OKSM factors. This coincided with upregulation of NANOG and appearance of cells expressing pluripotency markers. Upregulation of NANOG and number of pluripotent cells were greatly reduced throughout the reprograming process of AD-HIES fibroblasts that was restored by over-expression of functional STAT3. NANOGP8, the human-specific NANOG retrogene that is often expressed in human cancers, was also induced during reprogramming, to very low but detectable levels, in a STAT3-dependent manner. Our study revealed the critical role of endogenous STAT3 in facilitating reprogramming of human somatic cells.


2020 ◽  
Author(s):  
Surendra Sharma ◽  
Karl Munger

ABSTRACTHPV16 E7 has long been noted to stabilize the TP53 tumor suppressor. However, the molecular mechanism of TP53 stabilization by HPV16 E7 has remained obscure and can occur independent of E2F regulated MDM2 inhibitor, p14ARF. Here, we report that the Damage Induced Noncoding (DINO) lncRNA (DINOL) is the missing link between HPV16 E7 and increased TP53 levels. DINO levels are decreased in cells where TP53 is inactivated, either by HPV16 E6, expression of a dominant negative TP53 minigene or by TP53 depletion. DINO levels are increased in HPV16 E7 expressing cells. HPV16 E7 causes increased DINO expression independent of RB1 degradation and E2F1 activation. Similar to the adjacent CDKN1A locus, DINO expression is regulated by the histone demethylase, KDM6A. DINO stabilizes TP53 in HPV16 E7 expressing cells and as a TP53 transcriptional target, DINO levels further increase. Similar to other oncogenes such as adenovirus E1A or MYC, HPV16 E7 expressing cells are sensitized to cell death under conditions of metabolic stress and in the case of E7, this has been linked to TP53 activation. Consistent with earlier studies, we show that HPV16 E7 expressing keratinocytes are highly sensitive to metabolic stress induced by the antidiabetic drug, metformin. Metformin sensitivity of HPV16 E7 expressing cells is rescued by DINO depletion. This work identifies DINO as a critical mediator TP53 stabilization and activation in HPV16 E7 expressing cells.IMPORTANCEViral oncoproteins, including HPV16 E6 and E7 have been instrumental in elucidating the activities of cellular signaling networks including those governed by the TP53 tumor suppressor. Our study demonstrates that the long noncoding RNA DINO is the long sought missing link between HPV16 E7 and elevated TP53 levels. Importantly, the TP53 stabilizing DINO plays a critical role in the predisposition of HPV16 E7 expressing cells to cell death under metabolic stress conditions from metformin treatment.


2020 ◽  
Vol 12 (565) ◽  
pp. eaay0399
Author(s):  
Changyoun Kim ◽  
Alexandria Beilina ◽  
Nathan Smith ◽  
Yan Li ◽  
Minhyung Kim ◽  
...  

Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein–mediated microglial neurotoxicity via lowering of tumor necrosis factor–α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.


2019 ◽  
Vol 36 (4) ◽  
pp. 301-313
Author(s):  
Chenjian Song ◽  
Lingjing Liu ◽  
Junjie Chen ◽  
Yiran Hu ◽  
Jingli Li ◽  
...  

AbstractParticulate matter (PM) is an environmental pollutant closely associated with human airway inflammation. However, the molecular mechanisms of PM-related airway inflammation remains to be fully elucidated. It is known that COX-2/PGE2 play key roles in the pathogenesis of airway inflammation. Filaggrin is a transmembrane protein contributing to tight junction barrier function. As such, Filaggrin prevents leakage of transported solutes and is therefore necessary for the maintenance of epithelial integrity. The objective of the present study was to investigate the regulatory mechanisms of COX-2/PGE2 and Filaggrin upon PM exposure both in vivo and in vitro. C57BL/6 mice received intratracheal instillation of PM for two consecutive days. In parallel, human bronchial epithelial cells (HBECs) were exposed to PM for 24 h. PM exposure resulted in airway inflammation together with upregulation of COX-2/PGE2 and downregulation of Filaggrin in mouse lungs. Corresponding dysregulation of COX-2/PGE2 and Filaggrin was also observed in HBECs subjected to PM. PM exposure led to the phosphorylation of ERK, JNK, and PI3K signaling pathways in a time-dependent manner, while blockade of PI3K with the specific molecular inhibitor LY294002 partially reversed the dysregulation of COX-2/PGE2 and Filaggrin. Moreover, pretreatment of HBECs with NS398, a specific molecular inhibitor of COX-2, and AH6809, a downstream PGE2 receptor inhibitor, reversed the downregulation of Filaggrin upon PM exposure. Taken together, these data demonstrated that the PI3K signaling pathway upregulated COX-2 as well as PGE2 and acted as a pivotal mediator in the downregulation of Filaggrin.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2193-2193
Author(s):  
Min Zhang ◽  
James C. Moore ◽  
Je Ko ◽  
Wuxia Fu ◽  
Sharmila Prabhu ◽  
...  

Abstract The molecular mechanisms which mediate progression of chronic phase (CP) CML to accelerated and blast phase (BP) disease remain unclear, although one feature that correlates with progression is increased expression of the Bcr-Abl protein itself (Barnes et al., Can. Res. 2005). Increased Bcr-Abl expression is likely to contribute to the more aggressive behavior of BP disease, but the downstream factors that are dysregulated by the increased amounts of Bcr-Abl protein remain to be determined. In these studies we turned our attention to eIF4E since forced expression of eIF4E is transforming, and because increased levels of eIF4E have been found in BP but not CP CML (Topisirovic et al., Mol. Cell. Bio. 2003). eIF4E plays a critical role in cap-dependent translation and allows recruitment of the translation machinery to mRNA. eIF4E is phosphorylated at Ser209, and phosphorylation correlates with exposure to growth factors and increased cap-dependent translation. Using a panel of primary CML cells representing patients at various stages of disease, we confirmed that both Bcr-Abl and eIF4E protein levels were elevated in BP samples compared to those in CP, and furthermore that phosphorylation at Ser209 was dependent on Bcr-Abl kinase activity in BP but not CP samples. We next went on to explore the role of eIF4E phosphorylation in BP CML. Because eIF4E is exclusively phosphorylated at Ser209 by the MAPK signal-integrating kinases (Mnk1/2), we used a small molecule inhibitor of Mnk1/2, CGP57380, to inhibit eIF4E phosphorylation (kind gift of Dr. H. Gram, Novartis). Using MTS assays, we found that CGP57380 exhibited synergistic activity with imatinib mesyalte (IM) against Ba/F3-Bcr-Abl and K562 cells, and that this was associated with increased caspase-3 activation. Consistent with a role for eIF4E phosphorylation in cap-dependent translation, we found that CGP57380 augmented the IM-mediated inhibition of cap-binding complex (eIF4F) formation, as well as loading of mRNA onto polysomes. Interestingly, we also uncovered the existence of a novel negative-feedback loop regulating Mnk kinase. Here, treatment with CGP57380 resulted in increased phosphorylation of Mnk1 as well as its upstream activator, ERK, in a time- and dose-dependent manner. Because activation of the MEK/ERK pathway is essential to Bcr-Abl-mediated transformation, this finding suggested that the full activity of CGP57380 might be obscured by this feedback loop. In support of this, the addition of the MEK inhibitor, U0126, to the IM/CGP57380combination resulted in increased activity against CML cells. The triple combination was also effective against Ba/F3-Bcr-Abl cells harboring the E255K and T315I mutations, but not parental Ba/F3 cells (reduced by 50, 23, and 15% respectively of DMSO-treated controls by MTS assay). Colony forming assays also demonstrated the activity of the IM/CGP57380 combination against CML progenitor cells. In conclusion, our data demonstrate that: eIF4E protein expression and phosphorylation are upregulated in a Bcr-Abl-dependent manner in BP CML; Inhibition of eIF4E phosphorylation by the novel Mnk kinase inhibitor, CGP57380, synergizes with IM in killing CML cells, as well as overcomes certain forms of IM-resistance; The addition of CGP57380 to IM results in inhibition of key steps in cap-dependent mRNA translation, and may provide a mechanistic explanation for the activity of this agent in CML.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 381 ◽  
Author(s):  
O’Brien ◽  
Austin

Photobiomodulation (PBM) provides neuroprotection against dopaminergic cell death and associated motor deficits in rodent and primate models of Parkinson’s disease (PD). However, it has not yet been tested in the lipopolysaccharide (LPS) model of PD, which leads to dopaminergic cell death through microglia-evoked neuroinflammation. We investigated whether transcranial PBM could protect against dopaminergic cell death within the substantia nigra in male Sprague–Dawley rats following supranigral LPS injection. PBM fully protected rats from 10 µg LPS which would have otherwise caused 15% cell loss, but there was no significant neuroprotection at a 20 µg dose that led to a 50% lesion. Cell loss at this dose varied according to the precise site of injection and correlated with increased local numbers of highly inflammatory amoeboid microglia. Twenty microgram LPS caused motor deficits in the cylinder, adjusted stepping and rotarod tests that correlated with dopaminergic cell loss. While PBM caused no significant improvement at the group level, motor performance on all three tests no longer correlated with the lesion size caused by 20 µg LPS in PBM-treated rats, suggesting extranigral motor improvements in some animals. These results provide support for PBM as a successful neuroprotective therapy against the inflammatory component of early PD, provided inflammation has not reached a devastating level, as well as potential benefits in other motor circuitries.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1689-1698 ◽  
Author(s):  
M.E. Horb ◽  
G.H. Thomsen

Pattern formation in early embryogenesis is guided by maternal, localized determinants and by inductive interactions between cells. In Xenopus eggs, localized molecules have been identified and some, such as Vg1 and Xwnt-11, can specify cell fates by functioning as inducers or patterning agents. We have used differential screening to identify new Xenopus genes that regulate mesodermal patterning, and we have isolated a new member of the T-box family of transcription factors. This gene, named Brat, is expressed maternally and its transcripts are localized to the vegetal hemisphere of the egg. During early embryonic cleavage, Brat mRNA becomes partitioned primarily within vegetal cells that are fated to form the endoderm. Zygotic expression of Brat begins at the onset of gastrulation within the presumptive mesoderm of the marginal zone. Consistent with its zygotic expression pattern, Brat induces, in a dose-dependent manner, a full spectrum of mesodermal genes that mark tissues across the dorsal-ventral axis, from the blood through the Spemann organizer. Brat also induces endoderm, consistent with its vegetal localization, making Brat a good candidate for a maternal determinant of the endoderm. We tested whether endogenous Brat is required for mesoderm formation by expressing a dominant-negative, transcriptional repressor form of Brat in embryos. This treatment inhibited mesoderm formation and severely disrupted normal development, thereby establishing that Brat plays a critical role in embryonic mesoderm formation and body patterning.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3996-3996
Author(s):  
Xiaolei Wei ◽  
Yun Mai ◽  
Ru Feng ◽  
B. Hilda Ye

Abstract Diffuse large B cell lymphoma (DLBCL) is the most common lymphoid malignancy in the adult population and can be subdivided into two main subtypes, i.e. GCB-DLBCL and ABC-DLBCL. While both subtypes are derived from normal germinal center (GC) B cells, they differ in B cell maturation stage, transformation pathway, and clinical behavior. When treated with either the combination chemotherapy CHOP or the immuno-chemotherapy R-CHOP, the survival outcome of ABC-DLBCL patients is typically much worse than that of GCB-DLBCL patients. Although the molecular mechanisms underlying this survival disparity remain poorly understood, an attractive hypothesis is that there exist subtype-specific resistance mechanisms directed against the chemo-therapy drugs in the original CHOP formulation. In support of this notion, our previous study has revealed that Doxorubicin (Dox), the main cytotoxic ingredient in CHOP, has subtype-specific mechanisms of cytotoxicity in DLBCLs due to differences in its subcellular distribution pattern. In particular, Dox-induced cytotoxicity in ABC-DLBCLs is largely dependent on oxidative stress rather than DNA damage response. Based on these findings, we hypothesize that agents capable of disturbing the redox balance in ABC-DLBCL cells could potentiate the therapeutic activity of first line lymphoma therapy. As the major route of cystine uptake from extracellular space, the xCT cystine/glutamate antiporter controls the rate-limiting step for glutathione (GSH) synthesis in several types of cancer cells, including CLL. We focused the current study on xCT because its protein stability is known to be positively regulated by a splicing variant of CD44 and we have recently published that expression of CD44 and CD44V6 are poor prognosticators for DLBCL. Indeed, we found that surface CD44 is exclusively expressed in ABC-DLBCL (6/6) but not GCB-DLBCL (0/5) cell lines. In addition, the xCT proteins in two ABC-DLBCL cell lines, Riva and SuDHL2, are extraordinarily stable, with half-lives exceeding 24 hours. As such, transient transfection using siRNA oligos was ineffective in reducing the endogenous xCT protein in ABC-DLBCL cell lines. To circumvent this issue, we turned to a clinically approved anti-inflammatory drug, sulfasalazine (SASP), which is a validated xCT inhibitor in its intact form. When Riva and SuDHL2 cells were treated overnight with the IC50 dose of SASP, the endogenous GSH pool was drastically reduced, leading to significant increase in intracellular ROS, p38 and JNK activation, and progressive apoptosis. Unexpectedly, we found that Dox-treated cells had significantly elevated GSH levels, possibly the result of an antioxidant response to Dox-triggered ROS accumulation. This increase in GSH was completely suppressed when the IC25 dosage of SASP was included in the Dox treatment. As expected, SASP/Dox combination significantly enhanced Dox-triggered ROS accumulation and synergistically promoted cell death in Riva and SuDHL2 cells. Mechanistically, p38 activation and cell death induced by SASP/Dox combination could be markedly attenuated by pretreatment with glutathione monoethyl ester, demonstrating the critical role of oxidative stress. Furthermore, cytotoxicity triggered by SASP/Dox could also be suppressed by the p38 inhibitor, SB203580. We have developed stable cell lines expressing xCT shRNA to confirm the results obtained with SASP. In vivo interactions between SASP and Dox are also being evaluated in xenograft-based ABC-DLBCL models. In summary, we report here for the first time a critical role of xCT in sustaining in vivo GSH production in ABC-DLBCL cells. More importantly, pharmacologic inhibition of xCT function in ABC-DLBCL cells not only prevented Dox-induced endogenous GSH increase, but also potentiated Dox-induced ROS accumulation and cytotoxicity in a p38-dependent manner. With additional evidence from ongoing experiments, our study aims to provide a mechanistic basis for development of novel therapies that target either xCT or redox homeostasis to improve treatment outcomes for ABC-DLBCLs. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 358 (2) ◽  
pp. 481-487 ◽  
Author(s):  
Toshihiko AKI ◽  
Yoichi MIZUKAMI ◽  
Yoshitomo OKA ◽  
Kazuhito YAMAGUCHI ◽  
Koichi UEMURA ◽  
...  

Using H9c2 cells derived from rat cardiomyocytes, we investigated the mechanism of cell death during hypoxia in the presence of serum and glucose. Hypoxic cell death is by necrosis and is accompanied by metabolic acidosis. Moreover, hypoxic cell death is inhibited by Hepes buffer as well as by 2-deoxyglucose, an inhibitor of glycolysis, indicating that metabolic acidosis should play an essential role in hypoxic injury. The involvement of phosphoinositide 3-kinase (PI 3-kinase), which is known to activate glucose metabolism, was examined using its inhibitor, LY290042, or adenovirus-mediated gene transfer. Hypoxic cell death was inhibited by LY294002 in a dose-dependent manner. Overexpression of dominant negative PI 3-kinase was found to reduce cell death, whereas wild-type PI 3-kinase enhanced it. Dominant negative PI 3-kinase also reduced glucose consumption and acidosis, but this was stimulated by wild-type PI 3-kinase. The data indicate that PI 3-kinase stimulates cell death by enhancing metabolic acidosis. LY294002 significantly reduced glucose uptake, showing that PI 3-kinase regulates glycolysis at the step of glucose transport. These findings indicate the pivotal role of glucose metabolism in hypoxic cell death, and reveal a novel death-promoting effect of PI 3-kinase during hypoxia, despite this enzyme being considered to be a survival-promoting factor.


Sign in / Sign up

Export Citation Format

Share Document